Laplace变换-1

(单侧)Laplace 变换的定义

f ( t ) ↦ [ L f ] ( p ) = ∫ 0 ∞ e − p t f ( t ) d t f(t) \mapsto [Lf](p)=\int_0^{\infty} e^{-pt} f(t) dt f(t)[Lf](p)=0eptf(t)dt ,要求 p > 0 p>0 p>0 (或者 p p p的实部 > 0 >0 >0)

例子

  1. ∫ 0 ∞ e − p t t n d t = n ! p n + 1 \int_0^{\infty} e^{-pt} t^n dt = \frac{n!}{p^{n+1}} 0epttndt=pn+1n!
  2. 推广 n = s ∈ C n = s\in \mathbb{C} n=sC, 其中 s s s的实部 > 0 >0 >0. 此时 ∫ 0 ∞ e − p t t s − 1 d t = Γ ( s ) p s , \int_0^\infty e^{-pt} t^{s-1} dt = \frac{\Gamma(s)}{p^{s}}, 0eptts1dt=psΓ(s), 其中 Γ ( s ) = ∫ 0 ∞ e − t t s d t t , R e ( s ) > 0. \Gamma (s) = \int_0^\infty e^{-t} t^s \frac{dt}{t},\quad \mathrm{Re}(s)>0. Γ(s)=0ettstdt,Re(s)>0.
  3. ∫ 0 ∞ e − p t e s t d t = ∫ 0 ∞ e − ( p − s ) t d t = 1 p − s \int_{0}^{\infty} e^{-pt} e^{st}dt = \int_0^\infty e^{-(p-s)t}dt = \frac{1}{p-s} 0eptestdt=0e(ps)tdt=ps1 假设 p > 0 , s p>0, s p>0,s 使得积分收敛.

e i θ = cos ⁡ θ + i sin ⁡ θ , ∀ θ ∈ C . e^{i \theta}=\cos \theta + i\sin \theta, \forall \theta \in \mathbb{C}. eiθ=cosθ+isinθθC.

s = i ω , ω ∈ R , s=i\omega, \omega \in\mathbb{R}, s=,ωR,

∫ 0 ∞ e − p t e i ω t d t = 1 p − i ω . \int_0^\infty e^{-pt} e^{i \omega t} dt = \frac{1}{p-i\omega }. 0eptetdt=p1.
L H S = ∫ 0 ∞ e − p t ( cos ⁡ ω t + i sin ⁡ ω t ) d t \mathrm{LHS}=\int_0^\infty e^{-pt} (\cos \omega t+ i \sin \omega t) dt LHS=0ept(cosωt+isinωt)dt RHS的实部 = p ω 2 + p 2 , =\frac{p}{\omega^2+p^2}, =ω2+p2p, RHS的虚部 = ω ω 2 + p 2 . =\frac{\omega}{\omega^2+p^2}. =ω2+p2ω. 它们分别是 cos ⁡ ( ω t ) , sin ⁡ ( ω t ) \cos (\omega t), \sin (\omega t) cos(ωt),sin(ωt) 的Laplace变换.

cosh ⁡ ( ω t ) = 1 2 ( e ω t + e − ω t ) , sinh ⁡ ( ω t ) = 1 2 ( e ω t − e − ω t ) . \cosh (\omega t) = \frac{1}{2}(e^{\omega t}+ e^{-\omega t}), \quad \sinh (\omega t) = \frac{1}{2}(e^{\omega t}- e^{-\omega t}). cosh(ωt)=21(eωt+eωt),sinh(ωt)=21(eωteωt).
不难得到: ∫ 0 ∞ e − p t cosh ⁡ ( ω t ) d t = 1 2 ( 1 p − ω + 1 p + ω ) = p p 2 − ω 2 , \int_0^\infty e^{-pt} \cosh(\omega t) dt=\frac{1}{2} (\frac{1}{p-\omega}+ \frac{1}{p+\omega}) = \frac{p}{p^2-\omega^2}, 0eptcosh(ωt)dt=21(pω1+p+ω1)=p2ω2p,

∫ 0 ∞ e − p t sinh ⁡ ( ω t ) d t = 1 2 ( 1 p − ω − 1 p + ω ) = ω p 2 − ω 2 . \int_0^\infty e^{-pt} \sinh(\omega t) dt=\frac{1}{2} (\frac{1}{p-\omega}- \frac{1}{p+\omega}) = \frac{\omega}{p^2-\omega^2}. 0eptsinh(ωt)dt=21(pω1p+ω1)=p2ω2ω.

  • 22
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值