“MARS: A FINANCIAL MARKET SIMULATION ENGINE POWERED BY GENERATIVE FOUNDATION MODEL”
项目主页:https://mars-lmm.github.io/
论文地址:https://arxiv.org/pdf/2409.07486
Github地址:https://github.com/microsoft/MarS/
摘要
生成模型在金融领域的应用仍处于初步阶段,其能够模拟市场动态和训练策略,从而降低金融风险。本文介绍了一种名为大型市场模型(LMM)的新型模型,作为金融市场中订单级别的基础生成模型,这类似于数字领域中的语言建模方法。基于LMM的金融市场模拟引擎(MarS)被设计用于创建一个既真实又可互动控制的订单生成环境。
研究旨在评估LMM在金融市场中的扩展能力、MarS的真实模拟效果、平衡生成订单与市场影响的能力,以及探索MarS的各种潜在用途。MarS不仅可以用作预测工具或检测系统,还能作为一个分析平台和代理训练环境。本文致力于开拓金融市场的生成模型新天地,通过设计满足特定需求的MarS展示其在行业中的应用潜力。
简介
生成模型的目标是模拟各种行为在不同场景中的实际效果,涵盖从文本生成到视觉表现的各个领域。真实世界模拟器通过支持人机交互、机器人学习和生成训练数据等方式,提供帮助,但在虚拟环境中的潜力尚未被完全发掘。金融市场作为一个典型的虚拟环境,可以通过生成模型来模仿市场动态,让使用者能够在不承担风险的情况下学习交易策略和生成数据。这一模拟过程依赖于特定领域的结构化数据,例如订单和限价单簿(LOB)。
本文介绍了一种名为大型市场模型(LMM)的新方法,试图将大型语言模型的成功复制到金融市场中。基于LMM的金融市场模拟引擎(MarS)专注于订单对市场影响的建模以及高保真的生成能力。研究的主要目标包括评估LMM的扩展性、MarS的真实模拟效果、控制生成与市场影响之间的平衡,并展示MarS的各种潜在应用。作为首个聚焦于金融市场核心要素的生成模型,MarS有望引发金融任务处理方式的重大变革。其关键应用场景有四个:预测工具、风险检测系统、分析平台和代理训练环境。通过设计满足生成特定场景需求和订单市场影响建模要求的MarS,展示了它在行业内的多种应用前景,彰显了该模型的巨大潜力。
01MarS
MarS模拟系统需在以下三个方面表现出色:
- 高分辨率:通过详细重现交易订单和订单批次,精确模拟金融市场的动态变化,确保能够准确再现历史市场轨迹。
- 可控性:具备模拟多种市场情景的能力,适用于研究市场趋势、监测风险以及优化交易策略。
- 互动性:提供用户直接与模拟市场互动的平台,便于评估市场影响、分析交易策略的有效性及识别系统性风险。
有条件交易订单生成
订单序列 x = (x 0 , . . . , x n ) 的生成受四个因素的影响:
- 市场情景描述(DES