我们应用 傅里叶变换 来分析各种滤波器的频率特征。我们可以使用 np.fft.fft2() 对高斯和拉普拉斯滤波器应用傅里叶变换。我们使用 np.fft.fftshift() 将零频率分量移动到频谱的中心。
步骤
要查找高斯或拉普拉斯滤波器的傅里叶变换,可以按照以下步骤进行 –
- 导入所需的库。在以下所有Python示例中,所需的Python库是 OpenCV,Numpy 和 Matplotlib 。请确保您已经安装了它们。
-
定义高斯或拉普拉斯滤波器。
-
使用 np.fft.fft2(filter) 对上述已定义的滤波器应用傅里叶变换。
-
调用 np.fft.fftshift() 将零频率分量移动到频谱的中心。
-
应用对数变换并可视化滤波器和幅度谱。
让我们看一些示例,以便更清楚地了解问题。
示例
在这个Python程序中,我们找到了一个高斯滤波器的傅里叶变换。我们还可视化高斯滤波器和傅里叶变换后的高斯滤波器。
#导入所需的库
import cv2
import numpy as np
from matplotlib import pyplot as plt
#创建一个高斯滤波器
x = cv2.getGaussianKern