层次聚类方法对给定的数据集进行层次的分解,直到某种条件满足为止。具体又可分为:
凝聚的层次聚类:一种自底向上的策略,首先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到某个终结条件被满足。
分裂的层次聚类:采用自顶向下的策略,它首先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到达到了某个终结条件。
层次凝聚的代表是AGNES(AGglomerative NESting)算法。AGNES 算法最初将每个对象作为一个簇,然后这些簇根据某些准则被一步步地合并。两个簇间的相似度有多种不同的计算方法。聚类的合并过程反复进行直到所有的对象最终满足簇数目。
一、算法步骤
AGNES(自底向上凝聚算法)算法的具体步骤如下所示:
输入:包含 n 个对象的数据库。
输出:满足终止条件的若干个簇。
(1) 将每个对象当成一个初始簇;
(2) REPEAT
(3) 计算任意两个簇的距离,并找到最近的两个簇;
(4) 合并两个簇,生成新的簇的集合;
(5) UNTIL 终止条件得到满足。
二、距离计算
上述算法的关键在于如何计算聚类簇之间的距离?实际上每个簇是一个样本集合,因此只需要采用关于集合的某种距离即可。例如给定聚类簇
最小距离:dmin(Ci,Cj)=minp∈Ci,q∈Cj|p−q|.
最大距离:dmax(Ci,Cj)=maxp∈Ci,q∈Cj|p−q|.
均值距离