机器学习---聚类(原型聚类、密度聚类、层次聚类)

1. 原型聚类

原型聚类也称为“基于原型的聚类” (prototype-based clustering),此类算法假设聚类结构能通过一

组原型刻画。算法过程:通常情况下,算法先对原型进行初始化,再对原型进行迭代更新求解。著

名的原型聚类算法:k均值算法、学习向量量化算法、高斯混合聚类算法。

给定数据集k均值算法针对聚类所得簇划分

小化平方误差:

其中,是簇的均值向量。值在一定程度上刻画了簇内样本围绕簇均值向量的紧密程度,值越

小,则簇内样本相似度越高。

1.1 K均值

K均值算法:算法流程(迭代优化):初始化每个簇的均值向量,repeat:(更新)簇划分;计算

每个簇的均值向量,until:当前均值向量均未更新。

算法伪代码:

k均值算法实例: 

接下来以表9-1的西瓜数据集4.0为例,来演示k均值算法的学习过程。将编号为i的样本称为     

假定聚类簇数k =3,算法开始时,随机选择3个样本作为初始均值向量,即

 

考察样本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值