AMiner平台由清华大学计算机系研发,拥有我国完全自主知识产权。平台包含了超过2.3亿学术论文/专利和1.36亿学者的科技图谱,提供学者评价、专家发现、智能指派、学术地图等科技情报专业化服务。系统2006年上线,吸引了全球220个国家/地区1000多万独立IP访问,数据下载量230万次,年度访问量超过1100万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。
IJCAI 2020 论文推荐
A Deep Reinforcement Learning Approach to Concurrent Bilateral Negotiation
论文链接:https://www.aminer.cn/pub/5e37ef373a55acc00ddb8a86/?conf=ijcai2020
推荐理由:作者提出了一个新颖的谈判模型,允许代理学习如何在未知动态电子市场的并发双边谈判中进行谈判。该代理使用一个无模型强化学习的行为者关键架构来学习一个以深度神经网络表示的策略。该研究通过从监督人工市场数据来预训练策略,从而减少了谈判过程中学习所需的探索时间。同时,作者构建了用于并发谈判的自动化代理,这些代理能够适应不同的电子市场环境,而不需要进行预编程。
Simultaneous Arrival Matching for New Spatial Crowdsourcing Platforms
论文链接:https://www.aminer.cn/pub/5ef96b048806af6ef2772096/?conf=ijcai2020
推荐理由:近年来,3D空间众包平台开始流行,即用户和工人一起前往指定的工作地点进行服务,如趣运动、南瓜网等。在3D空间众包平台上,如何匹配用户与合适的工人和工作场所是一个经典的问题。现有的研究都忽略了分配到同一工作场所的工人和用户应该几乎同时到达,而这个问题在现实生活中普遍存在。因此,在本文中,作者提出了新颖的同步到达匹配(Simultaneous Arrival Matching,简称SAM)问题,其中工人和用户在给定的容忍时间内到达指定的工作地点。为解决SAM,该研究设计了滑动窗口算法和阈值扫描算法。同时,在真实数据集和合成数据集上的实验显示了上述算法的有效性和高效性。
Coloring graph neural networks for node disambiguation
论文链接:https://www.aminer.cn/pub/5df371de3a55acfd20674ba8/?conf=ijcai2020
推荐理由:在本文中,作者展示了一个简单的着色方案可以在理论和经验上提高消息传递神经网络(Message Passing Neural Networks,简称MPNNs)的表达能力。具体来说,作者引入了一种名为彩色局部迭代程序(Colored Local Iterative Procedure,简称CLIP)的图神经网络,使用颜色来辨别相同的节点属性,这种表示方式是有节点属性的图上连续函数的通用近似器。该研究的方法依赖于可分离性这一关键的拓扑特性,能够将精心选择的神经网络扩展到通用表示。最后,作者通过实验表明CLIP能够捕捉传统MPNNs无法区分的结构特征,在基准图分类数据集上表现最好。
AAAI 2021 论文推荐
Predicting Livelihood Indicators from Crowdsourced Street Level Images
论文链接:https://www.aminer.cn/pub/5ee9f15291e01152af022c6a/?conf=aaai2021
推荐理由:政府和其他大型组织的重大决策依赖于对民众福祉(the populace’s well-being)的测量,但在发展中世界的许多地方,大范围的福祉测量是昂贵的。因此,作者提出了一种廉价、可扩展、可解释的方法,从公共人群来源的街道图像中预测关键的民生指标。与传统的调查方法相比,这种图像方法的收集成本低,更新频率高,同时包含了一系列民生指标的可信相关信息。该研究提出了两种从街道图像中学习的方法。第一种方法通过检测信息量大的对象来创建多家庭聚类表征,第二种方法使用基于图的方法,利用图像之间的固有结构。通过可视化哪些特征对模型重要,以及如何使用这些特征,作者能够帮助终端用户组织理解模型,为指数估计提供了一种替代方法。通过实验和调查,作者证明了该方法可以用来准确预测印度各地的贫困、人口和健康指标。
Dual-Mandate Patrols: Multi-Armed Bandits for Green Security
论文链接: https://www.aminer.cn/pub/5f60a74b91e0113805870332/?conf=aaai2021
推荐理由:在绿色安全领域,保护野生动物和森林的养护工作受到了维护者(即巡逻者)数量有限的限制。维护者必须决定在保护区的每个区域花费多少时间,在探索不常去的区域和已知的热点区域之间进行平衡。作者将该问题表述为一个随机的多臂老虎机(multi-armed bandit),其中每个行动代表一个巡逻策略,以保证巡逻策略的收敛率。然而,天真的老虎机方法会为了长期的最优性而牺牲短期性能,导致动物被偷猎,森林被破坏。为了提高性能,作者利用奖励函数的平滑性和行动的可分解性,展示了Lipschitz-continuity和分解之间的协同作用。该研究弥补了组合和Lipschitz老虎机之间的差距,提出了一种无悔的方法,在优化短期性能的同时,收紧了现有的保证。
Visual Concept Reasoning Networks
论文链接:https://www.aminer.cn/pub/5f48cac291e011096f955fe3/?conf=aaai2021
推荐理由:分割-变换-合并(split-transform-merge)策略已被广泛用于视觉识别任务的卷积神经网络中。它通过明确定义多个分支来同时学习具有不同视觉概念或属性的表征,以近似稀疏连接的网络。然而,这些表征之间的依赖性或相互作用通常由密集和局部的操作定义,不含任何适应性或高级推理。作者提出利用这一策略,并将其与视觉概念推理网络(Visual Concept Reasoning Networks,VCRNet)相结合,以实现高级视觉概念之间的推理。该工作将每个分支与一个视觉概念相关联,并通过注意力模块选择一些局部描述符来推导出一个紧凑的概念状态。然后,这些概念状态通过基于图的交互进行更新,自适应地调节局部描述符。在本文中,作者通过分割-转换-关注-交互-调制-融合(split-transform-attend-interact-modulate-merge)阶段来描述该模型,并通过选择高度模块化的架构来将其实现。
Meta-learning framework with applications to zero-shot time-series forecasting
论文链接: https://www.aminer.cn/pub/5e4129b13a55ac9f8f89e1a4/?conf=aaai2021
推荐理由:元学习方法能否从不同的数据集中发现处理时间序列( time-series, TS)的通用方法,从而提高对来自不同数据集的新TS的泛化能力?该工作提供了上述问题的积极证据。其中,作者通过理论分析进一步确定了N-BEATS(一个最近的神经TS预测模型)内的元学习适应机制。该工作中的元学习理论预测,N-BEATS会根据给定的TS输入,迭代生成其任务特定参数的子集,从而逐步扩大架构的表现力。作者的实验结果证明了元学习对于成功进行TS源零点预测的重要性,支持了在TS源数据集上训练一个神经网络并将其部署在不同的目标TS数据集上无需重新训练。
Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models
论文链接:https://www.aminer.cn/pub/5dd3bf513a55ac1bdd46d902/?conf=aaai2021
推荐理由:在许多深度学习应用中,AI安全非常重要。给定一个训练好的深度学习模型,一个重要的自然问题是如何可靠地验证模型的预测。在本文中,作者提出了一个新的框架—深度验证器网络(deep verifier networks ,简称DVN),以验证深度判别模型与深度生成模型的输入和输出。该模型是基于条件变异的自动编码器,带有离散约束。同时,作者给出了模型的直观和理论依据。本文中的验证器网络是与预测模型一起独立训练的,因此不需要为一个新模型重新训练。作者在分布外检测和对抗性例子检测,以及结构化预测任务中的异常检测等问题上测试了网络,取得了最先进的结果。
DeepFakesON-Phys: DeepFakes Detection based on Heart Rate Estimation
论文链接: https://www.aminer.cn/pub/5f76fb6691e011f31b980677?conf=aaai2021
推荐理由:这项工作引入了一种基于生理测量的新型DeepFake检测框架。作者考虑使用rPPG(remote photoplethysmography)方法分析视频序列,寻找人体皮肤中微妙的颜色变化,揭示组织下人体血液的存在。在这项工作中,作者研究了rPPG对DeepFake视频检测的有效程度。该研究提出的名为DeepFakesON-Phys的假货检测器采用卷积注意力网络(Convolutional Attention Networ,简称CAN),从视频帧中提取空间和时间信息,分析并结合这两个来源,以更好地检测假视频。上述模型在两个流行的公共数据集(Celeb-DF and DFDC)上的AUC(Area Under the Curve,曲线下面积)都超过了98%,证明了基于生理测量的假货检测器在检测最新的DeepFake视频上的成功。
订阅了解更多论文信息,定制您的个人科研动态信息流:https://www.aminer.cn/user/notification?f=mt