构建基本的神经网络框架之声明变量,记得一旦有变量就一定要初始化
import tensorflow as tf
state=tf.Variable(0,name='counter')#定义state是一个变量,初始值为0
#print(state.name)
one=tf.constant(1)#定义one是一个常量,值为1
new_value=tf.add(state,one)#new_value是state和one相加
updata=tf.assign(state,new_value)#将nw_value赋予state,即更新state
init=tf.global_variables_initializer()
#如果有定义变量一定要初始化即赋初值,目前初始化已不再使用tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)#激活init
for i in range(5):#5次循环
sess.run(updata)#激活update
print(sess.run(state))#输出state,不能直接print(state),而是要写成该形式sess.run(state)
最后依次输出1,2,3,4,5