lstm网络三门之输入门

本文介绍了长短期记忆网络(LSTM)中的输入门,包括其定义、作用(控制信息流,避免长期依赖问题),以及计算步骤(Sigmoid和Tanh激活函数的应用)。强调了输入门在处理时间序列数据时的优势,如解决梯度问题和增强建模能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、介绍什么是LSTM网络输入门

1、定义

           长短期记忆网络(LSTM)是一种常用于处理和预测时间序列数据的深度学习模型。它使用门控机制来控制信息流动,其中输入门(input gate)是其中之一。输入门有助于控制在每个时间步中,新的信息应该如何被接受和存储

2、主要结构图

二、其作用和步骤:

1、作用

输入门的作用是控制当前时间步的输入信息是否应该被记忆单元(memory cell)所接受。

2、步骤

输入门由一个 Sigmoid 激活函数产生,该函数的输出在0到1之间。输入门的计算通常包括以下步骤:

  1. 输入门的计算

    • 以 (h_{t-1})(前一个时间步的隐藏状态)和 (x_t)(当前时间步的输入)为输入。
    • 使用权重矩阵将这两个输入相乘并添加偏置项。
    • 将结果分成两部分:一部分用于控制更新(sigmoid 激活函数),另一部分用于生成候选值(tanh 激活函数)。
  2. 控制更新(Input Gate)

    • Sigmoid 函数的输出表示哪些信息将被更新。
    • 值接近 0 意味着信息将被忘记,而值接近 1 意味着信息将被纳入记忆。
  3. 生成候选值(Candidate Values)

    • tanh 函数的输出创建一个新的候选值向量,其中包含可能的要记忆的信息。
  4. 将输入门控制的候选值与记忆单元进行更新

    • 计算新的记忆单元状态(cell state):之前的记忆单元状态乘以遗忘门的输出,然后加上输入门控制的候选值乘以输入门的输出。

3、总结

这种门控机制允许LSTM网络选择性地记住或忘记信息,这有助于解决长期依赖问题,并且有助于处理梯度消失和梯度爆炸等问题,从而增强了网络对时间序列数据的建模能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值