Win10 安装pytorch-gpu版本的坑

本文介绍了如何在官方指令下安装CPU版本的PyTorch,以及如何切换到GPU版本(如cu113)以适应cuda11.3。重点提到了版本选择和兼容性,并提供了检测PyTorch版本的代码。还提到由于paddlepaddle限制,切换到cuda11.2和torch-1.10.2+cu113的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官网指令安装torch是cpu版本的。 不知道安装的是cpu还是gpu版本对可以用torch.__version__查看,如果是xx+cpu就是cpu版本。

如果要安装GPU版本,去torch_stable里面找对应版本. 这里我用的是cu113/torch-1.10.2%2Bcu113-cp36-cp36m-win_amd64.whl理解一下参数:cu113表示需要cuda11.3,torch版本是1.10,2,cp36指需要的是python3.6,win系统.

另外如果之前有装过cuda的其他版本,再次安装不会覆盖.所以装了新cuda测试nvcc -V 还是老版本。只需要删除老版本的cuda的环境变量就可以.

检测pytorch是否可用的代码:

import torch
print(torch.__version__)

另1: 2022.4.29 由于要使用paddlepaddle,目前其只支持到11.2,故更换为11.2 ,torch1.10.2+cu113可兼容cuda11.2

### Windows 11 上安装 PyTorch-GPU 及其对应的 CUDA 配置 #### 虚拟环境准备 为了确保安装过程不会影响其他项目依赖,建议先创建一个新的 Conda 或虚拟环境。以下是基于 Conda 的方法: ```bash conda create -n torch-gpu python=3.9 conda activate torch-gpu ``` 上述命令会创建名为 `torch-gpu` 的新环境并激活它[^4]。 --- #### 显卡驱动更新 在安装 PyTorch-GPU 前,需确认已安装最新的 NVIDIA 显卡驱动程序。可以通过访问 [NVIDIA 官方网站](https://www.nvidia.com/Download/index.aspx),输入显卡型号和操作系统信息来获取最新驱动版本。如果未安装合适的驱动,则可能导致后续 CUDA 功能无法正常工作。 --- #### CUDA 工具包安装 根据引用内容可知,CUDA 是支持 GPU 加速的关键工具包。推荐选择稳定且兼容性强的 CUDA 版本(如 CUDA 11.3)。具体步骤如下: 1. 访问 [NVIDIA CUDA 下载页面](https://developer.nvidia.com/cuda-downloads) 并选择适合的操作系统(Windows 11)以及目标架构。 2. 执行下载后的安装文件,默认选项即可完成基本功能部署。 3. 验证 CUDA 是否成功安装: ```cmd nvcc -V ``` 如果返回类似以下信息则表示安装成功: ``` C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin\nvcc.exe: fatal error: no input files compilation terminated. ``` 此外,可通过检查环境变量进一步验证设置是否正确: ```cmd set cuda ``` 此命令应显示路径指向 CUDA 工具包所在目录[^3]。 --- #### PyTorch GPU 版本安装 一旦 CUDA 准备完毕,便可着手安装 PyTorchGPU 支持版本。官方提供了便捷查询链接帮助匹配特定需求组合下的最佳安装指令:<https://pytorch.org/get-started/locally/> 。对于采用 Conda 渠道的情况,通常执行下面语句即能满足多数场景的要求: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia ``` 这里特别指定了 `cudatoolkit=11.3` 参数以同步所选 CUDA 版本号[^2]。 完成后可测试导入模块是否无误: ```python import torch print(torch.cuda.is_available()) # 应输出 True 表明检测到可用 GPU 设备 print(torch.version.cuda) # 输出当前加载之 CUDA 编译版本字符串 ``` --- #### 注意事项 仅当计算机配备由 NVIDIA 提供图形处理单元 (GPU) 时才可行尝试以上流程;否则应当考虑转而设立纯 CPU 运作模式下运行框架实例。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值