机器学习:基于Python实现人工神经网络训练过程

本文介绍了人工神经网络(ANN)的基本概念,并通过一个线性分类问题,详细阐述了使用Python进行前向传播和反向传播的过程。在实验中,随着迭代次数增加,神经网络的预测结果逐渐接近真实输出。

在这里插入图片描述

机器学习:基于Python实现人工神经网络训练过程

作者:i阿极

作者简介:数据分析领域优质创作者、多项比赛获奖者:博主个人首页

😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍

📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪


大家好,我i阿极。喜欢本专栏的小伙伴,请多多支持

专栏案例:机器学习案例
机器学习(一):线性回归之最小二乘法
机器学习(二):线性回归之梯度下降法
机器学习(三):基于线性回归对波士顿房价预测
机器学习(四):基于KNN算法对鸢尾花类别进行分类预测
机器学习(五):基于KNN模型对高炉发电量进行回归预测分析
机器学习(六):基于高斯贝叶斯对面部皮肤进行预测分析
机器学习(七):基于多项式贝叶斯对蘑菇毒性分类预测分析
机器学习(八):基于PCA对人脸识别数据降维并建立KNN模型检验
机器学习(十四):基于逻辑回归对超市销售活动预测分析
机器学习(十五):基于神经网络对用户评论情感分析预测
机器学习(十六):线性回归分析女性身高与体重之间的关系
机器学习(十七):基于支持向量机(SVM)进行人脸识别预测
机器学习(十八):基于逻辑回归对优惠券使用情况预测分析
机器学习(十九):基于逻辑回归对某银行客户违约预测分析
机器学习(二十):LightGBM算法原理(附案例实战)
机器学习(二十一):基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测
机器学习(二十二):基于逻辑回归(Logistic Regression)对股票客户流失预测分析


1、人工神经网络简介

人工神经网络(ANN)是一种启发大脑的信息处理范例。人工神经网络与人一样,通过实例学习。ANN 通过学习过程配置用于特定应用,例如模式识别或数据分类。学习很大程度上涉及对神经元之间存在的突触连接的调整。
在这里插入图片描述

大脑由数千亿个称为神经元的细胞组成。这些神经元通过突触连接在一起,突触只不过是一个神经元可以向另一个神经元发送脉冲的连接。当一个神经元向另一个神经元发送兴奋信号时,该信号将被添加到该神经元的所有其他输入。如果它超过给定的阈值,那么它将导致目标神经元向前发出动作信号——这就是思维过程的内部工作原理。

在计算机科学中,我们通过使用矩阵在计算机上创建“网络”来模拟此过程。这些网络可以理解为神经元的抽象,而不考虑所有的生物复杂性。为了简单起见,我们将只建模一个简单的神经网络,其中有两层能够解决线性分类问题。
在这里插入图片描述

2、举例讲解人工神经网络原理

假设我们有一个问题,我们想要预测给定一组输入和输出作为训练示例的输出,如下所示:

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

i阿极

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值