
机器学习:基于Python实现人工神经网络训练过程
作者:i阿极
作者简介:数据分析领域优质创作者、多项比赛获奖者:博主个人首页
😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍
📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪
大家好,我i阿极。喜欢本专栏的小伙伴,请多多支持
1、人工神经网络简介
人工神经网络(ANN)是一种启发大脑的信息处理范例。人工神经网络与人一样,通过实例学习。ANN 通过学习过程配置用于特定应用,例如模式识别或数据分类。学习很大程度上涉及对神经元之间存在的突触连接的调整。

大脑由数千亿个称为神经元的细胞组成。这些神经元通过突触连接在一起,突触只不过是一个神经元可以向另一个神经元发送脉冲的连接。当一个神经元向另一个神经元发送兴奋信号时,该信号将被添加到该神经元的所有其他输入。如果它超过给定的阈值,那么它将导致目标神经元向前发出动作信号——这就是思维过程的内部工作原理。
在计算机科学中,我们通过使用矩阵在计算机上创建“网络”来模拟此过程。这些网络可以理解为神经元的抽象,而不考虑所有的生物复杂性。为了简单起见,我们将只建模一个简单的神经网络,其中有两层能够解决线性分类问题。

2、举例讲解人工神经网络原理
假设我们有一个问题,我们想要预测给定一组输入和输出作为训练示例的输出,如下所示:
本文介绍了人工神经网络(ANN)的基本概念,并通过一个线性分类问题,详细阐述了使用Python进行前向传播和反向传播的过程。在实验中,随着迭代次数增加,神经网络的预测结果逐渐接近真实输出。
订阅专栏 解锁全文
195

被折叠的 条评论
为什么被折叠?



