[语音识别]声学特征提取

本文详细介绍了语音识别中的声学特征提取过程,包括预加重、分帧、加窗、离散傅里叶变换、语谱图、梅尔刻度、梅尔滤波器组、FBANK和MFCC特征、差分以及CQCC特征。MFCC因其弱相关性适合GMM训练,而FBANK保留更多原始声学特征,常用在DNN训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

语音识别:声学特征提取

常用的声学特征有FBANKMFCCPLP等, MFCC特征各纬度之间具有较弱的相关性,适合GMM的训练,FBANK相比MFCC保留了更原始的声学特征,多用于DNN的训练。

MFCC特征提取流程

1. 预加重

语音中有频谱倾斜现象,即低频具有较高能量,需加重高频语音能量,使高频信息凸显出来。
x ′ [ t ] = x [ t ] − a x [ t − 1 ] x'[t]=x[t]-ax[t-1] x[t]=x[t]ax[t1]
其中x[t]表示音频数据的第t个采样点,a通常取值(0.95,0.99)

2. 分帧

一般每帧帧长为20ms或者25ms,假设采样率为16kHz,帧长为25ms,则一帧有16000*0.025=400个采样点。为确保声学特征参数的平滑性,一般采用重叠取帧的方式,即相邻帧之间存在重叠部分(帧移一般为10ms)。

3. 加窗

特征提取时,每次取出窗长为25ms的语音,进行离散傅立叶变换计算出一帧,接着步移10ms继续计算下一帧,相当于加了矩形窗。二棱角分明的矩形窗容易造成频谱泄露,可以选择使用海明窗(Hamming Window)、汉宁窗(Hanning Window)等。加窗计算方式为:
x ′ [ t ] = w [ n ] x [ n ] x'[t] = w[n]x[n] x[t]=w[n]x[n]
其中x[n]是所取窗口(窗长为N,即N个采样点)之内的第n个采样点,w[n]是对应权重,不同加密方式权重不一样。本质上加窗也是卷积。
不同窗函数形状

4. 离散傅里叶变换(DFT)

从每一段加窗后的音频中分别提取出频域信息。DFT的一个实现方法是快速傅立叶变换(FFT),可将事件复杂度从 O ( N 2 ) O(N^2) O(N2)降为 O ( N l o g 2 N ) O(Nlog_{2}N) O(Nlog2N),但是需要保证窗长N是2的指数。如果原窗长为400,一般在音频信号末尾补零扩展为512。

5. 语谱图

语音信号经过短时傅立叶变换(STFT)后得到的频谱为对称谱,取正频率轴的频谱曲线,并且将每一帧的频谱值按时间顺序拼接起来

6. 梅尔刻度(Mel Scale)

人耳对不同频率的感知程度不一样,频率越高敏感度越低,因此人耳的频域感知是非线性的,用梅尔刻度进行刻画。反映了人耳线性感知的梅尔频率Mef(f)与普通频率f之间的关系。即
M e l ( f ) = 1127 l n ( 1 + f / 700 ) Mel(f) = 1127 ln(1+f/700) Mel(f)=1127ln(1+f/700)

7. 梅尔滤波器组(Mel Filter Bank)

计算方式与加窗类似,越往高频,滤波器窗口越大,窗口扩大的量级与梅尔刻度一致。滤波器的个数就是梅尔频段的总数目,通常为几十
三角滤波器组的工作方式

8. FBANK特征

梅尔频谱的能量数值取对数得到FBANK特征,对数计算增强了特征的鲁棒性。用于DNN训练时,FBANK的维度就是梅尔滤波器的个数,常取20~40之间。

9. MFCC特征

FBANK中含有基频的谐波(相当于频谱中的毛刺),不利于整体轮廓(包络)的显现,并且各维度之间具有较高的相关性,不适宜GMM学习。MFCC的目的是消除与音素判别关系不大的谐波,保留包络信息对FBANK特征每帧进行离散傅立叶变换(IDFT)可以将包络与谐波分开,等价于对每帧FBANK进行离散余弦变换(DCT),生成结果记为倒谱

10. 差分

语音是时序信号,故声学特征的帧与帧之间并不是孤立的,是连续变化的,前后的变化往往包含一些声音线索,动态特征可以显示特征随时间变化的程度,常采用一阶差分二阶差分,一阶差分计算方式:
d [ t ] = ( c [ t + 1 ] − c [ t − 1 ] ) / 2 d[t] = (c[t+1]-c[t-1])/2 d[t]=(c[t+1]c[t1])/2
其中c[t]表示第t帧MFCC特征,二阶差分则是一阶差分的差分。通常用来训练GMM的声学特征共39维:12MFCCs+Energy(13维)+12 Δ MFCCs+ Δ Energy(13维) + 12 Δ2 MFCCs + Δ2 Energy(13维)

备注:对数计算好处包含一定程度上增加非线性,平滑数据、缩小数据范围,防止溢出、将乘变为加,计算方便、与softmax合用便于梯度计算和传递等。

11. CQCC特征

能实现在低频率范围具有较高的频率分辨率在高频率范围有较高的时间分辨率,可应用于声纹识别

总结

语谱图FBankMFCCPLP都采用短时傅立叶变换(STFT),具有规律的线性分辨率,而CQCC则具有几何级的分辨率。FBANK和MFCC都采用Mel滤波器组,而PLP则利用Bark滤波器组模拟人耳听觉特性。通过不同提取方法得到的声学特征所表征的语言特点是不同的,FBank保留更多的原始特征,MFCC去相关性较好,而PLP抗噪性更强

参考地址:https://mp.weixin.qq.com/s/wowvIK5sspVR7ogF-3keYA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值