Word2Vec:Word2Vec是如何工作的?它和LDA有什么区别与联系?
场景描述
Google2013年提出的Word2Vec是目前常用的词嵌入模型之一。Word2Vec
实际上是一种浅层的神经网络模型,它有两种网络结构
,分别是CBOW
(Continues Bags of Words)和Skip-gram
。
知识点:Word2Vec
, 隐狄利克雷模型(LDA)
、CBOA
、Skip-gram
问题:Word2Vec是如何工作的?它和LDA有什么区别与联系?
分析与解答
CBOW的目标是根据上下文出现的词语来预测当前词的生成概率,如下图1.3(a)所示;而Skip-gram是根据当前词来预测上下文中各词的生成概率,如下图1.3(b)所示。
其中