【机器学习Q&A】Word2Vec:Word2Vec是如何工作的?它和LDA有什么区别与联系?

本文介绍了Word2Vec的CBOW和Skip-gram模型,以及Hierarchical Softmax和Negative Sampling两种优化方法。Word2Vec通过上下文预测单词,而LDA则是基于概率图模型的主题聚类。两者主要区别在于模型结构和目标函数,Word2Vec侧重上下文共现特征,LDA侧重主题分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

场景描述

Google2013年提出的Word2Vec是目前常用的词嵌入模型之一。Word2Vec实际上是一种浅层的神经网络模型,它有两种网络结构,分别是CBOW(Continues Bags of Words)和Skip-gram

知识点Word2Vec隐狄利克雷模型(LDA)CBOASkip-gram
问题Word2Vec是如何工作的?它和LDA有什么区别与联系?

分析与解答

CBOW的目标是根据上下文出现的词语来预测当前词的生成概率,如下图1.3(a)所示;而Skip-gram是根据当前词来预测上下文中各词的生成概率,如下图1.3(b)所示。
Word2Vec的两种网络结构
其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值