论文阅读: 图分类方法评价及未来研究方向
图分类方法评价及未来研究方向
4. 图分类方法评价
首先介绍图分类领域常用的数据集和评价指标,然后对一些代表性图分类方法的实验结果进行比对分析.
4.1 常用数据集
目前图分类领域常用的数据集主要包括用于二分类/多分类的生物蛋白质数据集, 化学化合物数据集和社交网络类数据集, 以及用于多标签图分类的气味数据集. 数据集相关统计信息见表4:
化学化合物数据集中,通常每个图表示一个化合物,图中节点表示原子,边表示原子之间真实存在的化学键.
(1)MUTAG数据集由188个化学化合物结构图组成,根据它们对细菌的诱变作用分为2个类别.图中的节点表示原子,节点标签标识原子种类,包括C,N,O,F,I,Cl,Br. 边表示化学键, 边标签包括芳香键,单键,双键和三键.
(2)Mutagencity是诱变剂化合物数据集,图的标签分为诱变和非诱变两类.图中节点表示原子,节点标签标识原子种类, 包括C,O,Cl,H,N,F,Br,S,P,I,Na,K,Li,Ca.