【图神经网络】图分类学习研究综述[3]:图分类方法评价及未来研究方向

本文概述了图分类领域的常用数据集,包括化学化合物、生物蛋白质和社交网络数据集,并介绍了图分类方法的评价指标,如准确率、精确率、召回率和F1值。文章还对比了不同图分类方法的效果,指出图神经网络在结构信息利用上的局限性,并探讨了图分类在化学信息学、生物信息学、社交网络分析、计算机安全和自然语言处理等领域的应用。未来研究方向包括图结构信息的充分利用、模型的可解释性、表达能力的衡量以及图分类新技术的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图分类方法评价及未来研究方向

图分类研究综述

4. 图分类方法评价

首先介绍图分类领域常用的数据集和评价指标,然后对一些代表性图分类方法的实验结果进行比对分析.

4.1 常用数据集

目前图分类领域常用的数据集主要包括用于二分类/多分类的生物蛋白质数据集, 化学化合物数据集和社交网络类数据集, 以及用于多标签图分类的气味数据集. 数据集相关统计信息见表4:
图分类领域常用数据集
化学化合物数据集中,通常每个图表示一个化合物,图中节点表示原子,边表示原子之间真实存在的化学键.
(1)MUTAG数据集由188个化学化合物结构图组成,根据它们对细菌的诱变作用分为2个类别.图中的节点表示原子,节点标签标识原子种类,包括C,N,O,F,I,Cl,Br. 边表示化学键, 边标签包括芳香键,单键,双键和三键.
(2)Mutagencity是诱变剂化合物数据集,图的标签分为诱变和非诱变两类.图中节点表示原子,节点标签标识原子种类, 包括C,O,Cl,H,N,F,Br,S,P,I,Na,K,Li,Ca.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值