【时序分析】使用skforecast进行时间序列预测并分享14个Python时间序列分析库

本文详细介绍了如何使用skforecast库进行时间序列预测,包括递归多步预测、直接多步预测和外生变量预测。此外,还列举并对比了14款Python时间序列分析库,如tsfresh、AutoTS、Prophet等,为读者提供了丰富的选择和参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


时间序列是一系列按照时间顺序排列的数据,这些数据之间的间隔可以是等距的,也可以是不等距的。 时间序列的预测过程包括通过对时间序列的过去行为进行建模(自回归)或使用其他外部变量来预测时间序列的未来值

本文介绍了如何使用Scikit-learn回归模型来进行时间序列的预测。具体而言,它介绍了Skforecast,一个简单的库,包含了将任何Scikit-learn回归模型适应于预测问题所需的类和函数。
SKFORECAST
Skforecast是一个Python库,可以轻松地将scikit学习回归器用作单步和多步预测器。它还适用于任何与scikit-learn API兼容的回归器(LightGBMXGBoostCatBoost…)。

pip install skforecast

1. 时间序列分析基础

为了将机器学习模型应用于预测问题,需要将时间序列转换为一个矩阵ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值