使用skforecast进行时间序列预测并分享14个Python时间序列分析库
时间序列是一系列按照时间顺序排列的数据,这些数据之间的间隔可以是等距的,也可以是不等距的。 时间序列的预测过程包括通过对时间序列的过去行为进行建模(自回归)或使用其他外部变量来预测时间序列的未来值。
本文介绍了如何使用Scikit-learn回归模型来进行时间序列的预测。具体而言,它介绍了Skforecast
,一个简单的库,包含了将任何Scikit-learn
回归模型适应于预测问题所需的类和函数。
Skforecast是一个Python库,可以轻松地将scikit学习回归器用作单步和多步预测器。它还适用于任何与scikit-learn API兼容的回归器(LightGBM
、XGBoost
、CatBoost
…)。
pip install skforecast
1. 时间序列分析基础
为了将机器学习模型应用于预测问题,需要将时间序列转换为一个矩阵ÿ