【扩散模型】一文教你使用扩散模型生成音频

本文详细介绍了如何使用音频扩散模型生成和转换音频,包括从预训练模型采样、音频到频谱的转换、微调模型以及在Hugging Face Hub上传模型。重点讨论了DiffWave、VoiceGrad和FastDiff等扩散模型在音频生成中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


音频扩散是罗伯特·达加维尔·史密斯(Robert Dargavel Smith)的,它利用图像生成领域的最新进展,通过将音频样品转换为MEL频谱图。如下面所示。Mel.py中的类Mel可以将音频片段转换为x_res x y_res的Mel频谱图,反之亦然。分辨率越高,丢失的音频信息就越少。DDPM在从音频文件目录生成的一组mel声谱图上进行训练。然后,它被用来合成类似的mel频谱图,然后将其转换回音频。

a mel spectrogram
本文介绍源音频数据与频谱之间的转换方法,以及如何将音频数据转换为频谱所使用的生成器,然后微调一个指定曲风的音频扩散模型,最后将自己的管线上传到Hugging Face Hub。

Audio Diffusion 代码仓库:https://github.com/teticio/audio-diffusion

使用扩散模型生成音频

首先导入相关依赖库

!pip install diffusers transformers git
### 扩散模型中的先验模型 #### 先验模型的作用 在扩散模型中,先验模型的主要作用是对数据分布进行建模并提供额外的信息支持。这种信息可以来自领域知识、历史数据或其他相关资源。通过引入先验模型,能够显著提升生成样本的质量以及提高模型对于复杂任务的理解能力[^3]。 #### 先验模型的实现方法 一种常见的做法是在潜变量空间加入特定结构化的约束条件或者利用预训练好的编码器来捕捉输入特征之间的关系。例如,在医疗影像分析场景下,《Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge》一文中提到的方法结合了潜在扩散技术和先前积累的知识库来进行更精确的时间序列预测与疾病进程模拟[^4]。 具体来说,当构建基于扩散机制的学习框架时,可以通过如下几种方式融入先验: 1. **调整噪声注入过程**:改变标准前向过程中添加的标准正态分布项形式,使其符合某些已知统计特性; 2. **修改去噪目标函数**:除了单纯最小化重建误差外,还可以考虑增加惩罚项以鼓励输出满足给定模式偏好; 3. **设计专用架构组件**:比如采用带有记忆单元或注意力模块的神经网络作为核心部件之一,从而更好地处理长期依赖性和局部细节保留等问题; 另外值得注意的是参数η的选择也会影响最终效果——较小值倾向于保持原始形态不变而较大数值则允许更多变异可能性出现[^2]。 ```python import torch.nn as nn class CustomUNet(nn.Module): def __init__(self, channels_in=3, num_classes=None): super().__init__() self.encoder = Encoder(channels_in) self.decoder = Decoder(num_classes) def forward(self, x_t, timesteps, condition=None): features = self.encoder(x_t, timesteps) output = self.decoder(features, condition) return output ``` 上述代码片段展示了一个自定义 U-Net 的简单版本,其中 `condition` 参数可用于传递外部指导信号(即所谓的“先验”),以便进一步优化反向传播路径上的决策制定流程。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值