OpenVINO IR与 ONNX模型加载速度的对比与实现

模型加载速度区别

模型加载速度的快慢通常取决于多个因素,包括模型格式、模型的大小和复杂性、使用的框架以及底层硬件。关于 OpenVINO IR (.xml/.bin) 和 ONNX 格式在模型加载上的对比,以下是一些主要考虑因素:

  1. 优化和兼容性:

    • OpenVINO IR: OpenVINO Toolkit 专为 Intel 架构优化,可以提供针对 Intel CPU、GPU、VPU 等的特定优化。IR 格式是为了与 OpenVINO 兼容和优化而设计的,可以更好地利用 Intel 硬件的特性。
    • ONNX: ONNX 是一个开放格式,用于在不同的深度学习框架之间移植模型。虽然它在不同框架之间提供了良好的兼容性,但它可能不会针对特定硬件进行优化。
  2. 加载时间:

    • 加载模型的时间不仅取决于模型的格式,还受到底层解析和编译过程的影响。OpenVINO 在将模型转换为 IR 格式时进行了优化,这可能在加载时提供速度上的优势。
    • 使用 ONNX 格式时,模型加载速度可能受限于框架对 ONNX 的支持和解析效率。
  3. 运行时推理性能:

    • OpenVINO IR 格式的模型在推理时可能表现更佳,尤其是在 Intel 硬件上,因为 OpenVINO 会针对这些硬件进行特定的优化。
    • ONNX 模型在不同框架下的推理性能可能因框架的实现和优化水平而异。
  4. 硬件依赖性:

    • 如果您使用的是 Intel 的硬件,特别是 CPU 或 Movidius VPU,使用 OpenVINO IR 格式可能会提供更好的性能。
    • 对于非 Intel 硬件,ONNX 可能是一个更通用的选择,尽管可能需要额外的优化以实现最佳性能。

总之,如果您在 Intel 硬件上进行模型部署,使用 OpenVINO IR 格式可能会在模型加载和运行时推理上提供性能上的优势。这是因为 OpenVINO 对 Intel 硬件有针对性的优化。而在非特定于 Intel 的硬件或需要跨框架兼容性的情况下,ONNX 可能是一个更灵活的选择。

整体部署代码实现

window
onnx版:pth——onnx——C++部署onnx
IR版:pth——onnx——xml/bin——C++部署xml

onnx版

pth转化为onnx(python版)

import torch
import torch.onnx
import os.path as osp
import numpy as np
import onnx
import onnxruntime as ort
import torchvision
checkpoint_path = "model.pth"
model = Yourmodel(10, 2, 12)
model_dict = model.load_state_dict(torch.load(checkpoint_path))  # 获取自定义模型的参数字典
model.eval()
dummy_input = torch.randn(1,3,256,256)
onnx_path = 'model.onnx'
torch.onnx.export(model,
                  (dummy_input, class_code),
                  onnx_path,
                  verbose = True,
                  opset_version=10,
                  input_names='input',
                  output_names="output"   
                  )
print(f"ONNX模型已保存")

onnx部署(C++版)

void loadModel(const std::string& onnxModelPath) {
    // 仅在模型未加载时加载模型
    if (!model) {
        model = core.read_model(onnxModelPath);
        compiled_model = core.compile_model(model, "CPU");
        std::cout << "ONNX 模型已加载" << std::endl;
    }
    else {
        std::cout << "ONNX 模型已经加载,无需再次加载" << std::endl;
    }
}

int main() {
    auto start_time = std::chrono::high_resolution_clock::now();
    string onnxModelPath = "model.onnx";

    // 打印推理时间
    loadModel(onnxModelPath);
    auto end_time = std::chrono::high_resolution_clock::now();
    auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time);

    std::cout << "模型加载时间: " << duration.count() << " 毫秒" << std::endl;
    return 0;
}

IR版

在实现过程中,我发现很多都是基于openvino2021版中安装的路径下:openvino2021.x/deployment_tools/model_optimizer中的mo_onnx.py 进行转化,但是openvino2022之后就没有这个文件夹,我也并没有找到,所以我尝试了另一种方法

onnx转xml/bin

通过wsl在win下安装ubuntu,在ubuntu虚拟环境中通过openvino进行转化,具体方法请见
在这里插入图片描述

xml C++部署

直接将onnx文件换成xml即可,运行时会自动找到对应相同路径下的bin文件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值