模型加载速度区别
模型加载速度的快慢通常取决于多个因素,包括模型格式、模型的大小和复杂性、使用的框架以及底层硬件。关于 OpenVINO IR (.xml/.bin) 和 ONNX 格式在模型加载上的对比,以下是一些主要考虑因素:
-
优化和兼容性:
- OpenVINO IR: OpenVINO Toolkit 专为 Intel 架构优化,可以提供针对 Intel CPU、GPU、VPU 等的特定优化。IR 格式是为了与 OpenVINO 兼容和优化而设计的,可以更好地利用 Intel 硬件的特性。
- ONNX: ONNX 是一个开放格式,用于在不同的深度学习框架之间移植模型。虽然它在不同框架之间提供了良好的兼容性,但它可能不会针对特定硬件进行优化。
-
加载时间:
- 加载模型的时间不仅取决于模型的格式,还受到底层解析和编译过程的影响。OpenVINO 在将模型转换为 IR 格式时进行了优化,这可能在加载时提供速度上的优势。
- 使用 ONNX 格式时,模型加载速度可能受限于框架对 ONNX 的支持和解析效率。
-
运行时推理性能:
- OpenVINO IR 格式的模型在推理时可能表现更佳,尤其是在 Intel 硬件上,因为 OpenVINO 会针对这些硬件进行特定的优化。
- ONNX 模型在不同框架下的推理性能可能因框架的实现和优化水平而异。
-
硬件依赖性:
- 如果您使用的是 Intel 的硬件,特别是 CPU 或 Movidius VPU,使用 OpenVINO IR 格式可能会提供更好的性能。
- 对于非 Intel 硬件,ONNX 可能是一个更通用的选择,尽管可能需要额外的优化以实现最佳性能。
总之,如果您在 Intel 硬件上进行模型部署,使用 OpenVINO IR 格式可能会在模型加载和运行时推理上提供性能上的优势。这是因为 OpenVINO 对 Intel 硬件有针对性的优化。而在非特定于 Intel 的硬件或需要跨框架兼容性的情况下,ONNX 可能是一个更灵活的选择。
整体部署代码实现
window
onnx版:pth——onnx——C++部署onnx
IR版:pth——onnx——xml/bin——C++部署xml
onnx版
pth转化为onnx(python版)
import torch
import torch.onnx
import os.path as osp
import numpy as np
import onnx
import onnxruntime as ort
import torchvision
checkpoint_path = "model.pth"
model = Yourmodel(10, 2, 12)
model_dict = model.load_state_dict(torch.load(checkpoint_path)) # 获取自定义模型的参数字典
model.eval()
dummy_input = torch.randn(1,3,256,256)
onnx_path = 'model.onnx'
torch.onnx.export(model,
(dummy_input, class_code),
onnx_path,
verbose = True,
opset_version=10,
input_names='input',
output_names="output"
)
print(f"ONNX模型已保存")
onnx部署(C++版)
void loadModel(const std::string& onnxModelPath) {
// 仅在模型未加载时加载模型
if (!model) {
model = core.read_model(onnxModelPath);
compiled_model = core.compile_model(model, "CPU");
std::cout << "ONNX 模型已加载" << std::endl;
}
else {
std::cout << "ONNX 模型已经加载,无需再次加载" << std::endl;
}
}
int main() {
auto start_time = std::chrono::high_resolution_clock::now();
string onnxModelPath = "model.onnx";
// 打印推理时间
loadModel(onnxModelPath);
auto end_time = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time);
std::cout << "模型加载时间: " << duration.count() << " 毫秒" << std::endl;
return 0;
}
IR版
在实现过程中,我发现很多都是基于openvino2021版中安装的路径下:openvino2021.x/deployment_tools/model_optimizer中的mo_onnx.py 进行转化,但是openvino2022之后就没有这个文件夹,我也并没有找到,所以我尝试了另一种方法
onnx转xml/bin
通过wsl在win下安装ubuntu,在ubuntu虚拟环境中通过openvino进行转化,具体方法请见
xml C++部署
直接将onnx文件换成xml即可,运行时会自动找到对应相同路径下的bin文件