目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于机器学习的人脸年龄预测系统
设计思路
一、课题背景与意义
精确预测人脸的年龄可以在许多实际应用中发挥重要作用,如人脸认证、社交媒体分析、年龄特定的广告和产品推荐等。年龄预测可以用于用户画像的构建和社交行为的分析,提供更精准的个性化服务和广告推荐。此外,还可以在人机交互、年龄特定的医疗诊断和年龄相关研究等领域发挥重要作用
二、算法理论原理
2.1 主动外观模型
主动外观模型是一种广泛应用于计算机视觉和模式识别领域的模型,最早由等人在年提出。在典型应用中,通过对一组手动标定了面部特征点的人脸图像进行训练,利用统计方法来建立包含人脸形状和皮肤纹理信息的模型。这些特征点描述了人脸的基本形状和主要组成部分,如人脸轮廓、眼睛、鼻子、嘴巴等。外观模型结合了人脸形状和皮肤纹理,建立在形状模型和纹理模型的基础上。主动体现在通过人脸拟合算法不断调整生成新的模板图像,使其与待定位的人脸图像匹配,直到生成的模板图像与待定位的人脸图像最大程度地吻合,从而实现人脸面部特征的定位。
在人脸皮肤纹理建模中,采用了一种称为分段线性仿射技术的方法,用于对人脸形状中的皮肤纹理进行归一化采样。该技术的实现过程如下:首先,使用三角化方法对训练集中的人脸图像形状和基准模板形状的特征点进行三角化,生成各自的三角化网格形状结构。然后,通过分段线性仿射方法进行映射变换,将需要采样的人脸图像形状的三角化网格中的每个像素的信息(如灰度值或其他值)映射到基准模板形状的三角化网格中相应的位置(使用仿射变换表示)。通过这样的映射,实现了对人脸皮肤纹理信息的采样。下图展示了坐标点映射的过程。
通过分段线性仿射技术,可以将人脸图像进行纹理采样,并对其进行归一化处理,得到归一化处理后的人脸皮肤纹理图像。这个过程可以用来提取人脸的纹理特征,用于人脸识别、表情分析和人脸生成等应用。同时,通过采用基准模板和仿射变换,可以保留人脸的形状特征,使得纹理采样的结果更加准确和可靠。
相关代码示例:
# 读取人脸图像和基准模板的三角网格结构图像
face_image = cv2.imread('face_image.jpg')
template_image = cv2.imread('template_image.jpg')
# 定义基准模板的三角形顶点坐标
template_points = np.array([
[50, 50], # 左上角顶点
[200, 50], # 右上角顶点
[125, 200] # 底部中心顶点
])
# 定义人脸图像中对应的三角形顶点坐标
face_points = np.array([
[70, 80], # 左上角顶点
[220, 90], # 右上角顶点
[140, 220] # 底部中心顶点
])
# 进行仿射变换
affine_matrix = cv2.getAffineTransform(face_points.astype(np.float32), template_points.astype(np.float32))
affine_face_image = cv2.warpAffine(face_image, affine_matrix, (template_image.shape[1], template_image.shape[0]))
# 归一化处理
normalized_image = cv2.normalize(affine_face_image, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
2.2 支持向量机
支持向量机是在线性可分的两类样本中构造最优的分类超平面,使得该超平面能够正确地分离两类样本,并且使得两类样本之间的分类间隔最大化。支持向量机中最简单且最早提出的模型是最大间隔分类器,它仅适用于特征空间中数据线性可分的情况。针对某个维度的特征空间中的二类分类问题,定义向量𝑥为特征空间中的数据,并将向量𝑥与其所属的类进行关联。
线性支持向量机只适用于解决线性可分的两类数据分类问题。然而,在实际问题中,样本数据通常分布在高维空间中且往往是线性不可分的。因此,需要对线性支持向量机进行改进,使其能够解决非线性数据分类问题,这便是非线性支持向量机的发展方向。
为了提高对测试特征数据的年龄估计精度,提出了一种基于分层机制的支持向量机模型。该模型的主要思想是,尽管每个人的年龄变化有着独特的特点,但从整体年龄段来看,人们的年龄容貌变化遵循相似的规律。通过将特征数据集按照年龄段进行分层,建立多层模型。首先,利用第一层模型对特征数据进行粗略分类,将其划分到相应的年龄段中。然后,针对每个年龄段,训练相应的第二层子模型,利用第一层模型的结果选择相应的子模型进行精确的年龄预测。通过这种分层思想,基于支持向量机的年龄估计模型能够提高预测的准确性。
在测试数据中,首先使用第一层模型进行预测,确定其最可能属于哪个年龄段,实现粗略分类。然后,将预测结果与对应的第二层子模型进行最后一次预测,实现精确分类,从而得到最终的年龄预测结果。
相关代码示例:
# 加载人脸年龄库数据
images, age_labels = load_data()
# 划分训练集和测试集
train_images, train_labels, test_images, test_labels = split_dataset(images, age_labels, test_size=0.2)
# 第一层模型(粗略分类)
first_layer_predicted_labels = first_layer_model(train_images, train_labels, test_images)
# 第二层模型(精确分类)
second_layer_predicted_labels = second_layer_model(train_images, train_labels, test_images, first_layer_predicted_labels)
# 计算最终的年龄预测结果的平均绝对误差(MAE)
mae = mean_absolute_error(test_labels, second_layer_predicted_labels)
三、检测的实现
3.1 数据集
收集人脸图像和对应年龄标签的数据集:首先,需要收集包含人脸图像的数据集。这些图像可以通过各种渠道获取,如公共数据库、在线图像库或自行收集。确保数据集具有多样性,涵盖不同年龄段和人种等因素。这样可以增加模型的泛化能力,使其能够适应各种人脸特征和年龄分布.
为了提高模型的鲁棒性和准确性,需要对图像进行归一化。这包括调整图像的大小、亮度和对比度等。常见的归一化方法包括将图像缩放到固定的尺寸,将像素值映射到特定的范围(如0到1之间),或者对图像进行均衡化等。
相关代码示例:
def normalize_image(image):
# 调整图像大小为固定尺寸
resized_image = cv2.resize(image, (224, 224)) # 假设目标尺寸为 224x224
# 将像素值映射到特定范围(0到1之间)
normalized_image = resized_image.astype(np.float32) / 255.0
# 对图像进行均衡化(可选)
# normalized_image = cv2.equalizeHist(normalized_image)
return normalized_image
# 读取图像
image = cv2.imread('your_image.jpg')
# 归一化图像
normalized_image = normalize_image(image)
3.2 实验环境搭建
3.3 实验及结果分析
通过实验证明,基于分层思想的人脸年龄估计模型提高了年龄估计的准确性。在实验中,从人脸年龄库中随机选择一部分图像作为训练样本集,剩下的图像作为测试样本集。在进行年龄估计时,分别采用手动标定人脸特征点和自动人脸拟合两种方法,构成了两个测试样本集。
手动标定面部特征点的年龄估计累积指数较未分层的年龄估计累积指数更高,同样自动标定人脸图像面部特征点的年龄估计累积指数也比未经过分层处理的年龄估计累积指数更高。
相关代码示例 :
train_images, train_labels, test_images, test_labels = split_dataset(images, age_labels, split_ratio=0.8)
# 手动标定人脸特征点
manual_landmarks = [manual_landmark_detection(image) for image in test_images]
# 自动人脸拟合
automatic_landmarks = [automatic_face_fitting(image) for image in test_images]
# 提取手动标定和自动人脸拟合的特征
manual_features = extract_features(test_images, manual_landmarks)
automatic_features = extract_features(test_images, automatic_landmarks)
# 训练和测试手动标定的模型
manual_predicted_labels, manual_mae = train_and_test_model(train_images, train_labels, manual_features, test_labels)
# 训练和测试自动人脸拟合的模型
automatic_predicted_labels, automatic_mae = train_and_test_model(train_images, train_labels, automatic_features, test_labels)
实现效果图样例
创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!