从对偶定理看择一定理(Farkas为例)

上图是对偶问题,下图为Farkas引理

Farkas引理改变表达方式

I:\begin{Bmatrix} z=cx>0\\ Ax\leqslant 0\\ \forall x \end{Bmatrix} II:\begin{Bmatrix} w=y\cdot 0=0\\ yA=c\\ y\geqslant 0 \end{Bmatrix}

x的无约束转为y的等式条件以及x的小于等于条件转为y的大于等于条件与对偶定理完全一致。

对于对偶定理,若原问题有最优解,那么对偶问题也有最优解,且目标函数值相等

这里改动了目标函数,取消了最大化与最小化问题,专门设置了条件使得两个线性系统互斥(一个有解,另一个必无解;一个无解,另一个必有解)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值