上图是对偶问题,下图为Farkas引理
Farkas引理改变表达方式
x的无约束转为y的等式条件以及x的小于等于条件转为y的大于等于条件与对偶定理完全一致。
对于对偶定理,若原问题有最优解,那么对偶问题也有最优解,且目标函数值相等。
这里改动了目标函数,取消了最大化与最小化问题,专门设置了条件使得两个线性系统互斥(一个有解,另一个必无解;一个无解,另一个必有解)
上图是对偶问题,下图为Farkas引理
Farkas引理改变表达方式
x的无约束转为y的等式条件以及x的小于等于条件转为y的大于等于条件与对偶定理完全一致。
对于对偶定理,若原问题有最优解,那么对偶问题也有最优解,且目标函数值相等。
这里改动了目标函数,取消了最大化与最小化问题,专门设置了条件使得两个线性系统互斥(一个有解,另一个必无解;一个无解,另一个必有解)