1.使用NumPy让Python的科学计算更加高效
- 简介:NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
- 区别:为什么不是直接使用list,而是更加高效的NumPy
- 原因:NumPy重新定义了数据结构,使用的是C语言编写,运行速度非常快,主要是用于数组计算。
- 规则:避免使用隐式拷贝,而是采用就地操作的方式:如使用x = 2,不用y = x2
官网地址:https://numpy.org/devdocs/user/quickstart.html
中文学习网站:https://www.runoob.com/numpy/numpy-tutorial.html
NumPy包含的两个重要的对象:
- ndarray:一个强大的N维数组对象 ndarray
- ufunc:全称为universal function
ndarray(N-dimensional array object ) 对象
- ndarray:多维数组
- 一维数组的秩=1,二维数组的秩=2,三维数组的秩=3
- 线性数组称为一个轴(axes),秩就是描述轴的数量
创建数组:
import numpy as np
a = np.array([1, 2, 3])
b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b[1,1]=10 # 直接赋值进行修改
print(a.shape) # 获取数组的大小
print(b.shape)
print(a.dtype) # 获取元素的属性
print(b)
# 运行结果
'''
(3,)
(3, 3)
int32
[[ 1 2 3]
[ 4 10 6]
[ 7 8 9]]
'''
结构数组
- 目的:统计一个班级里面的学生的姓名、年龄、以及语文、英语、数学成绩:
- NumPy的实现方式:
import numpy as np
# 使用dtype定义结构类型
persontype = np.dtype({
# 很明显names和formats是关键字,不能出错!
'names':['name', 'age', 'chinese', 'math', 'english'],
'formats':['S32','i', 'i', 'i', 'f']})
# 定义数组的时候用array中指定了的结构数组类型dtype=persontype
peoples = np.array([("ZhangFei",32,75,100, 90),("GuanYu",24,85,96,88.5),
<