使用Numpy快速处理数据

本文介绍了NumPy库在Python科学计算中的重要性,详细讲解了如何创建和操作ndarray对象,包括ufunc运算、数组创建、算数与统计函数的使用,如amax、amin、percentile等,并探讨了排序方法。通过实例展示了NumPy如何提升数据处理效率。
摘要由CSDN通过智能技术生成

1.使用NumPy让Python的科学计算更加高效

  • 简介:NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
  • 区别:为什么不是直接使用list,而是更加高效的NumPy
  • 原因:NumPy重新定义了数据结构,使用的是C语言编写,运行速度非常快,主要是用于数组计算。
  • 规则:避免使用隐式拷贝,而是采用就地操作的方式:如使用x = 2,不用y = x2

官网地址:https://numpy.org/devdocs/user/quickstart.html

中文学习网站:https://www.runoob.com/numpy/numpy-tutorial.html

NumPy包含的两个重要的对象:

  • ndarray:一个强大的N维数组对象 ndarray
  • ufunc:全称为universal function

ndarray(N-dimensional array object ) 对象

  • ndarray:多维数组
  • 一维数组的秩=1,二维数组的秩=2,三维数组的秩=3
  • 线性数组称为一个轴(axes),秩就是描述轴的数量

创建数组:

import numpy as np
a = np.array([1, 2, 3])
b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b[1,1]=10 # 直接赋值进行修改
print(a.shape)  # 获取数组的大小
print(b.shape) 
print(a.dtype) # 获取元素的属性
print(b)

# 运行结果
'''
(3,)
(3, 3)
int32
[[ 1  2  3]
 [ 4 10  6]
 [ 7  8  9]]
'''

结构数组

  • 目的:统计一个班级里面的学生的姓名、年龄、以及语文、英语、数学成绩:
  • NumPy的实现方式:
import numpy as np
# 使用dtype定义结构类型
persontype = np.dtype({
   
    # 很明显names和formats是关键字,不能出错!
    'names':['name', 'age', 'chinese', 'math', 'english'],
    'formats':['S32','i', 'i', 'i', 'f']})
# 定义数组的时候用array中指定了的结构数组类型dtype=persontype
peoples = np.array([("ZhangFei",32,75,100, 90),("GuanYu",24,85,96,88.5),
       <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值