台大2020课程-GNN(Graph Nerual Network)课程笔记

课程链接:

https://www.bilibili.com/video/BV1G54y1971S?from=search&seid=5084415522145555976

笔记

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
!Notes:空间域使用较多的是GAT,谱域使用较多的是GCN

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
!Notes:这里上面的四张图像表示的是四组graph spectral域的基同时由下面的分析可以知道 λ \lambda λ越大,对应相邻节点的信息变化也就越大,说明频率越高。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

总结

我觉得课程将结合信号中的卷积和滤波概念,将GCN的公式是怎么一步步推导出来的讲述的比较清晰,之前看深入浅出图神经网络上直接告诉我们graph spectral上的信号 x ^ = U T x \hat{x} = U^Tx x^=UTx,并没有解释这个过程,同时也给出了一些spatial model 的Aggregation和readout的做法,还有最后实验上的一些说明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值