具有双重影响的推荐系统中的用户创建者特征动态
推荐系统的设计具有向用户展示相关内容和帮助内容创作者接触目标受众的双重目的。这些系统的两面性自然会影响用户和创建者:用户的偏好可以通过他们被推荐的项目来改变,而创建者可能会受到激励来改变他们的内容,以便更频繁地被推荐。我们定义了一个模型,称为用户-创建者特征动力学,来捕捉推荐系统的双重影响。我们证明了具有双重影响的推荐系统肯定会两极分化,导致系统中的多样性损失。然后,我们从理论和实验两个方面研究了在推荐系统中促进多样性的方法作为一种缓解两极分化的方法。出乎意料的是,我们发现在双重影响存在的情况下,常见的促进多样性的方法不起作用。而相关性优化方法,如 top- k k k推荐,可以防止两极分化,提高系统的多样性。
LLM-SR:长尾顺序推荐的大型语言模型增强
顺序推荐系统(SRS)旨在根据用户的历史交互来预测用户的后续选择,并在电子商务和社交媒体等不同领域得到了应用。然而,在现实世界的系统中,大多数用户只与少数项目交互,而大多数项目很少被