【前沿 热点 顶会】NIPS/NeurIPS 2024中与推荐系统有关的论文

具有双重影响的推荐系统中的用户创建者特征动态

推荐系统的设计具有向用户展示相关内容和帮助内容创作者接触目标受众的双重目的。这些系统的两面性自然会影响用户和创建者:用户的偏好可以通过他们被推荐的项目来改变,而创建者可能会受到激励来改变他们的内容,以便更频繁地被推荐。我们定义了一个模型,称为用户-创建者特征动力学,来捕捉推荐系统的双重影响。我们证明了具有双重影响的推荐系统肯定会两极分化,导致系统中的多样性损失。然后,我们从理论和实验两个方面研究了在推荐系统中促进多样性的方法作为一种缓解两极分化的方法。出乎意料的是,我们发现在双重影响存在的情况下,常见的促进多样性的方法不起作用。而相关性优化方法,如 top- k k k推荐,可以防止两极分化,提高系统的多样性。

LLM-SR:长尾顺序推荐的大型语言模型增强

顺序推荐系统(SRS)旨在根据用户的历史交互来预测用户的后续选择,并在电子商务和社交媒体等不同领域得到了应用。然而,在现实世界的系统中,大多数用户只与少数项目交互,而大多数项目很少被

### 推荐系统级会议列表 在推荐系统领域,多个国际学术会议被认为是级会议。这些会议涵盖了广泛的议题和技术进展,对于研究人员和从业者来说非常重要[^1]。 #### 1. ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) 该会议专注于信息检索的研究和发展,也包括推荐系统在内的多种应用技术。作为历史悠久的信息检索领域的重要活动之一,它吸引了大量高质量的投稿。 #### 2. International Conference on Web Search and Data Mining (WSDM) 此会议关注网络搜索数据挖掘方面的工作,同样涉及到了推荐算法及其优化等内容,在业界享有很高的声誉。 #### 3. ACM Conference on Recommender Systems (RecSys) 这是专门针对推荐系统的年度盛会,汇聚了来自全球各地的研究者共同探讨最新的研究成果和技术趋势。会议不仅限于理论分析还包括实际应用场景下的解决方案探索。 #### 4. IEEE International Conference on Data Mining (ICDM) 虽然主要聚焦于数据挖掘领域,但是由于推荐系统本质上也是一种数据分析工具,因此在这个会议上也能找到许多关于个性化服务构建的相关讨论。 #### 5. Knowledge Discovery and Data Mining Conference (KDD) 作为一个综合性的大数据处理平台,KDD每年都会吸引到众多尖学者分享他们在不同学科交叉点上的见解,其中包括但不限于机器学习模型改进以支持更精准的商品推荐等方面的话题. #### 6. International Conference on Learning Representations (ICLR) 尽管 ICLR 主要侧重于深度学习方面的最新突破,但鉴于当前很多先进的推荐机制都是建立在这种前沿AI 技术基础之上的,所以这里也是不容错过的一个重要交流场所[^4]. ```python top_conferences = [ "ACM SIGIR", "WSDM", "RecSys", "IEEE ICDM", "KDD", "ICLR" ] for conference in top_conferences: print(conference) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值