2024年NIPS中6篇时序大模型研究汇总

论文标题:AutoTimes: Autoregressive Time Series Forecasters via Large Language Models(NIPS24)

本文提出 AutoTimes,将大型语言模型重新定位为自回归时间序列预测器,把时间序列投射到语言标记的嵌入空间中,自动回归生成任意长度的未来预测。该预测器与任何仅解码器的大型语言模型都兼容,展现出回溯长度的灵活性,而且随着大型语言模型规模的增大,其可扩展性也得以体现。此外,把时间序列构建成提示形式,将预测的上下文拓展到回溯窗口之外,即情境内预测。通过引入嵌入大型语言模型的文本时间戳,AutoTimes 能够利用时间顺序信息来对齐多元时间序列。从经验角度来看,与先进的基于大型语言模型的预测器相比,AutoTimes 仅用 0.1% 的可训练参数就达到了顶尖水平,训练 / 推理速度更是提高了 5 倍有余。

论文标题:Are Language Models Actually Useful for Time Series Forecasting?(NIPS24)

大型语言模型(LLMs)正被应用于时间序列预测。但语言模型对时间序列真的有用吗?在对三种近期流行的基于大型语言模型的时间序列预测方法进行的一系列消融研究中,我们发现移除大型语言模型组件或者用一个基本的注意力层代替它,并不会降低预测性能 —— 在大多数情况下,结果甚至有所提高!我们还发现,尽管预训练的大型语言模型计算成本很高,但它们并不比从头开始训练的模型表现更好,它们无法体现时间序列中的顺序依赖关系,在少样本情境下也没有帮助。此外,我们对时间序列编码器进行了探索,发现拼接和注意力结构的性能与基于大型语言模型的预测器相近。

论文标题:From News to Forecast: Iterative Event Reasoning in LLM-Based Time Series Forecasting(NIPS24)

本文利用大型语言模型(LLMs)和生成式智能体,通过对文本和时间序列数据进行推理来增强时间序列预测。以语言为媒介将社会事件自适应地整合到预测模型中,使新闻内容与时间序列的波动相匹配,从而提供更丰富的见解。具体而言,作者利用基于大型语言模型的智能体迭代地过滤掉无关的新闻,并采用类人推理来评估预测。这使得模型能够分析复杂事件,如意外事件和社会行为的变化,并持续改进新闻的选择逻辑和智能体输出的稳健性。通过将选定的新闻事件与时间序列数据相结合,作者对一个预训练的大型语言模型进行微调,以预测时间序列中的数字序列。结果表明预测准确性有了显著提高,这意味着通过有效利用非结构化新闻数据,时间序列预测可能会出现范式转变。

论文标题:Large Pre-trained time series models for cross-domain Time series analysis tasks(NIPS24)

本文从不同领域的异构时间序列中提取对模型语义上有用的标记化输入,提出了大型预训练时间序列模型(LPTM),它引入了一种自适应分割的新方法,该方法在预训练期间自动确定特定于数据集的最佳分割策略。这使得LPTM在针对不同的下游时间序列分析任务进行微调以及在零样本设置下,其性能与特定领域的最先进模型相近或更优。与最先进的基准相比,LPTM在实现更优的预测和时间序列分类结果的同时,所使用的数据量减少了40%,训练时间减少了50%。

论文标题:TIME-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting(NIPS24)

本文提出了TIME-FFM,一种利用预训练语言模型的时间序列预测联邦基础模型。作者首先将时间序列转换为文本标记的形式。为了引导语言模型进行时间序列推理,提出了一个提示适配模块,用于动态地(而非人工地)确定针对特定领域的提示。鉴于跨领域的数据异质性,通过学习全局编码器和局部预测头设计了一种个性化的联邦训练策略。实验表明,TIME - FFM的性能优于现有技术,并有望成为有效的少样本和零样本预测器。

论文标题:Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series(NIPS24)

本文引入了微型时间混合器(TTM),一种紧凑的模型(从100万参数起步),具有有效的迁移学习能力,仅在公开的时间序列数据集上进行训练。TTM基于轻量级的TSMixer架构,融合了自适应分块、多样分辨率采样和分辨率前缀调整等创新技术,能够以最小的模型容量处理不同数据集分辨率下的预训练。此外,它采用多级建模来捕获通道相关性,并在微调过程中注入外生信号。在零/少样本预测方面,TTM比现有的流行基准模型性能高出(4 - 40%),同时显著降低了计算需求。而且,TTM很轻便,甚至可以在仅有CPU的机器上运行,提高了可用性,有利于在资源受限的环境中更广泛地应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值