YOLOv9【训练+训练过程中的报错处理】

本文介绍了YOLOv9的目标检测模型训练过程,包括论文简介、训练前的环境搭建和数据集准备。在训练过程中,作者遇到了文件定位错误和依赖包版本不匹配的问题,并给出了详细的解决办法,如修改配置文件、降低依赖包版本等。文章还分享了训练时可能遇到的显存不足问题及解决策略,并提到了模型大小对训练的影响。
摘要由CSDN通过智能技术生成

科技发展的速度真的是很快呀!YOLOv8还没有捂热,YOLOv9就出来了,先一睹为快!

论文:https://arxiv.org/pdf/2402.13616.pdf (YOLOv9: Learning What You Want to Learn
Using Programmable Gradient Information

代码 Github:https://github.com/WongKinYiu/yolov9

资源:https://download.csdn.net/download/A__MP/88908327

一 :【论文简貌】

1.1 指标/参数比较图MS COCO 数据集
在这里插入图片描述
1.2 性能对比表
在这里插入图片描述
其他的细节,可以去论文中看看,感觉改的东西还是挺多的,下面直接进行训练部分。

二:【YOLOv9训练】

写在前面:YOLOv9的训练文件(train.py)设计与YOLOv5是非常相似的,所以如果你使用过YOLOv5的话,操作YOLOv9的训练还是很简单的。

【2.1 训练前准备】

2.1.1 虚拟环境搭建

关于这部分操作前面我写过一篇文章,可以看看,这次调试YOLOv9的时候,我顺着走了一遍,问题不大,只不过YOLOv8变YOLOv9,链接如下。

搭建虚拟环境:https://blog.csdn.net/A__MP/article/details/136331757

2.1.2:数据集准备

我测试过了,数据集的文件目录与YOLOv8一致,是可以进行训练的。也就是说,如果你前一段时间在玩YOLOv8,你完全可以将你的数据集“移植过来”,只需要改变一下你的data.yaml中的路径。

当然,你也可以使用YOLOv5的数据集文件目录格式,也是可以行得通的。这么说吧,这两种是互通的,在YOLOv8上我试过了,不过我建议使用YOLOv8的格式,比较规整和舒服。

**数据集准备:**https://blog.csdn.net/A__MP/article/details/136411203

(注意:因为这篇重点讲训练过程,所以前两个过程分享了两个链接,麻烦了。)

【2.2:训练】准备好就可以开始训练了!!

2.2.1 打开项目,并安装依赖包

首先,利用Pycharm打开下载好的YOLOv9项目。看右下角所处的虚拟环境是否是自己设置的,如果不是,请修改回来。 https://blog.csdn.net/A__MP/article/details/136357068 这个链接中的前两步。

注意

要解决YOLOv8训练自己的数据集报错问题,可以参考以下步骤: 1. 首先,请确保您已经正确安装了YOLOv8所需的所有环境,并且环境配置没有问题。可以参考引用提供的链接,按照其的指导进行环境的安装和配置。 2. 接下来,检查您的数据集和相关文件是否符合要求。确保您已经按照要求制作了自己的数据集,并且创建了正确的yaml文件。可以参考引用提供的链接,了解如何创建自己的数据集和yaml文件。 3. 如果报错信息指明了具体的问题,请仔细阅读报错信息,并根据报错信息进行相应的调整。可能需要检查文件路径、文件格式、标签格式等方面的问题。 4. 如果报错信息不明确或者您无法解决问题,可以尝试搜索引用提供的解决方案。该文章可能包含与您遇到的问题相似的情况,并给出了解决方法。 5. 如果以上步骤都没有解决问题,您还可以在相关的技术论坛或社区提问,寻求其他人的帮助。分享报错信息和相关的代码片段,可以提高您得到帮助的几率。 总之,解决YOLOv8训练自己的数据集报错问题需要仔细检查环境配置、数据集制作和相关文件的正确性,并参考相关文档和解决方案进行排查和调整。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [YOLOv8训练自己的数据集(足球检测)](https://blog.csdn.net/FriendshipTang/article/details/129035180)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [解决pytorch-yolov3 train 报错的问题](https://download.csdn.net/download/weixin_38663197/12855403)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小的学徒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值