YOLOv8模型改进4【增加注意力机制GAM-Attention(超越CBAM,不计成本地提高精度)】

本文介绍了GAM-Attention注意力机制,一种超越CBAM的机制,旨在提高目标检测精度。虽然实际效果依赖于具体任务,但可以在YOLOv8模型上尝试增加GAM以提升性能。通过在通道和空间注意力上增强跨维度信息交互,GAM在分类任务上表现出色。文章详细说明了如何将GAM集成到YOLOv8模型的代码实现中,并提供了训练参数设置的指导。注意在集成过程中可能出现的报错及解决办法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、GAM-Attention注意力机制简介

GAM全称:Global Attention Mechanism。它被推出的时候有一个响亮的口号叫做:超越CBAM,不计成本地提高精度。由此可见,它的主要作用是为了目标检测精度的提高。

但是,大家都明白,具体效果怎么样,还得看具体的任务,我浅浅地试了一下,这个注意力机制在小目标检测任务中表现还是可以的,如果你有这方面的需求,可以尝试一下增加GAM注意力机制。

上一篇文章中说,通道注意力与空间注意力被广泛地应用在视觉任务中,CBAM注意力机制就是融合了两者。无独有偶,GAM注意力机制也采用了通道注意力+空间注意力的框架。不同的是GAM注意力机制的作者提出了一种全局吸引机制,这种机制是通过在减少信息约简的同时放大全局交互表示来提高深度神经网络的性能。

因为作者认为以往的注意力方法都忽略了通道与空间的相互作用丢失了跨维信息。考虑到跨维度信息的重要性,并放大跨维度的交互作用,GAM就应运而生

GAM注意力机制的模型结构图如下图所示:
在这里插入图片描述

下面是GAM中通道注意力与空间注意力的结构图
在这里插入图片描述
GAM注意力机制在数据集Cifar100上的分类结果
在这里插入图片描述

GAM注意力机制在数据集ImageNet-1K的分类结果
在这里插入图片描述

【注:代码Pytorch实现Github】:https://github.com/dengbuqi/GAM_Pytorch?tab=readme-ov-file

***【注:论文–Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions链接】**https://arxiv.org/pdf/2112.05561v1.pdf

【注:GAM注意力机制论文中并没有将其应用到目标检测任务中进行尝试,所以再次强调–它的具体性能得用了才知道!】

二、增加GAM-Attention注意力机制YOLOv8模型上

方法基本还是一样的,只会有一些细微的差别:
【1: …/ultralytics/nn/modules/conv.py

在这个文件末尾增加有关GAM-Attention的代码:(有两段,不要少加!!!)

#增加GAM注意力
def channel_shuffle(x, groups=2):  ##shuffle channel
    # RESHAPE----->transpose------->Flatten
    B, C, H, W = x.size()
    out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()
    out = out.view(B, C, H, W)
    return out


class GAM_Attention(nn.Module):
    # https://paperswithcode.com/paper/global-attention-mechanism-retain-information
    def __init__(self, c1, c2, group=True, rate=4):
        super(GAM_Attention, self).__init__()

        self.channel_attention = nn.Sequential(
            nn.Linear(c1, int(c1 / rate)),
            nn.ReLU(inplace=True),
            nn.Linear(int(c1 / rate), c1)
        )

        self.spatial_attention = nn.Sequential(

            nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(c1
### 如何使用GAM改进YOLOv8注意力机制 #### 方法概述 为了提升YOLOv8目标检测性能,在网络架构中引入全局注意模块(GAM),可以增强模型对于特征图的关注度,从而提高检测精度。具体来说,通过在YOLOv8同阶段加入GAM来调整通道间的关系并突出重要区域。 #### 实现细节 在网络设计上,可以在骨干网之后、颈部之前的位置插入GAM层。这使得经过编码器提取的基础特征能够被重新加权处理后再传递给后续部分用于预测框生成与分类任务。此外,也可以考虑在整个FPN结构内部署多个GAM实例以进一步优化多尺度下的表现[^1]。 #### 代码示例 下面给出了一段Python代码片段作为参考,展示了如何基于PyTorch框架实现上述提到的功能: ```python import torch.nn as nn class GAM(nn.Module): """ Global Attention Module """ def __init__(self, channels): super(GAM, self).__init__() # Channel attention branch self.channel_attention = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(channels, channels//8, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(channels//8, channels, kernel_size=1), nn.Sigmoid() ) # Spatial attention branch self.spatial_attention = nn.Sequential( nn.Conv2d(channels, channels//8, kernel_size=7, padding=3), nn.BatchNorm2d(channels//8), nn.ReLU(inplace=True), nn.Conv2d(channels//8, 1, kernel_size=7, padding=3), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() channel_att_map = self.channel_attention(x).view(b,c,1,1) spatial_att_map = self.spatial_attention(x) out = (channel_att_map * x) + (spatial_att_map.expand_as(x)*x) return out def add_gam_to_yolov8(model): for name, module in model.named_children(): if isinstance(module, nn.Sequential): # Assuming neck or backbone is Sequential new_modules = [] for sub_module in module: new_modules.append(sub_module) if isinstance(sub_module, SomeConvLayerType): # Replace with actual layer type you want to insert after gam_layer = GAM(sub_module.out_channels) new_modules.append(gam_layer) setattr(model, name, nn.Sequential(*new_modules)) return model ``` 此代码定义了一个简单的`GAM`类,并提供了一个辅助函数`add_gam_to_yolov8()`用来遍历YOLOv8模型中的各个组件并将新创建好的GAM单元按需嵌入其中。需要注意的是这里的`SomeConvLayerType`应该替换为你实际想要在其后面添加GAM的具体卷积层类型名称。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小的学徒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值