Python用log文件绘制损失、准确率曲线

本文介绍如何使用Python解析log文件,通过正则表达式匹配训练和验证集的损失及准确率数据,并进一步绘制曲线图表,以便于分析机器学习或深度学习模型的训练过程。
摘要由CSDN通过智能技术生成

一、导入包

from matplotlib import rcParams
import matplotlib.pyplot as plt
import re

二、读取文件

##显示中文
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = 'SimSun,Times New Roman'

##读取log文件
logFile = r'...\log-20210818-090024.log' 
text = ''
file = open(logFile)
for line in file:
    text += line
file.close()

三、正则表达式匹配训练集、验证集每个批次的数据

all_list = re.findall('step - loss: .*[0-9]',text)  

结果
在这里插入图片描述

正则表达式解释:’step - loss: .*[0-9]‘
因为log文件中每个批次的训练、验证数据以’step - loss‘开头,数字结尾
这是我的log文件
四、从包含训练、验证数据的大列表中分割训练集损失、训练集准确率、验证集损失、验证集准确率

train_loss =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值