目录
1. scatter() 定义和参数说明
scatter() 或 scatter_() 常用来返回根据index映射关系映射后的新的tensor。其中,scatter() 不会直接修改原来的 Tensor,而 scatter_() 直接在原tensor上修改。
官方文档:torch.Tensor.scatter_ — PyTorch 2.0 documentation
参数定义:
- dim:沿着哪个维度进行索引
- index:索引值
- src:数据源,可以是张量,也可以是标量
简言之 scatter() 是通过 src 来修改另一个张量,修改的元素值和位置由 dim 和 index 决定
2. 示例和详细解释
在官方文档中,给出了3维tensor的具体操作说明,看起来很蒙,没关系继续往下看
self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0
self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1
self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2
接下来的示例,我们以2维为例,那上面的公式简化为如下,
self[index[i][j]][j] = src[i][j] # if dim == 0
self[i][index[i][j]] = src[i][j] # if dim == 1
示例:将全零的张量,根据index和scr进行值的变化
src = torch.arange(1, 11).reshape((2, 5))
# src: tensor([[0.8351, 0.2974, 0.9028, 0.4250, 0.0370],
# [0.4564, 0.6832, 0.6854, 0.6056, 0.7118]])
index = torch.tensor([[0, 1, 2, 0, 0], [0, 1, 4, 2, 3]])
dist = torch.zeros(2, 5, dtype=src.dtype).scatter(1, index, src)
# dist: tensor([[0.0370, 0.2974, 0.9028, 0.0000, 0.0000],
# [0.4564, 0.6832, 0.6056, 0.7118, 0.6854]])
将上述张量使用表格表示:
当 dim = 1时,dist[i