HDU 1754

很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。 
这让很多学生很反感。 

不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。
Input
本题目包含多组测试,请处理到文件结束。 
在每个测试的第一行,有两个正整数 N 和 M ( 0<N<=200000,0<M<5000 ),分别代表学生的数目和操作的数目。 
学生ID编号分别从1编到N。 
第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。 
接下来有M行。每一行有一个字符 C (只取'Q'或'U') ,和两个正整数A,B。 
当C为'Q'的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。 
当C为'U'的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。 
Output
对于每一次询问操作,在一行里面输出最高成绩。
Sample Input
5 6
1 2 3 4 5
Q 1 5
U 3 6
Q 3 4
Q 4 5
U 2 9
Q 1 5
Sample Output
5
6
5
9


        
  
Hint
Huge input,the C function scanf() will work better than cin
        
 

线段树模板题 线段树的效率真的堪忧啊...有空希望能看一下主席树 败者树这些...以及zkw的线段树...

代码如下(线段树的时间复杂度怎么看??)

//TLE 改了之后就AC 但还是要再理解一下
#include <iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=200000;
int a[maxn];
//维护最大值
//问题 假如更改的时候把最大值修改为小于第二大的值 那不会有问题???
struct node
{
    int Max,left,right;//区间的值 左右端点
}SegTree[maxn<<2];
void build(int x,int left,int right)//done
{
    SegTree[x].left  = left;
    SegTree[x].right = right;
    if(left == right)//递归到叶子节点了
        {
            SegTree[x].Max=a[left];
            return ;
        }
    int mid=(left+right)>>1;
    build((x<<1),left ,mid);
    build((x<<1) + 1,mid+1,right);
    if(SegTree[x<<1].Max > SegTree[(x<<1)+1].Max)
        SegTree[x].Max = SegTree[x<<1].Max;
    else
        SegTree[x].Max = SegTree[(x<<1)+1].Max;//选两者中较大的为Max
    //建树的地方????
}
void update(int x,int i,int val)//done
{
    if(val > SegTree[x].Max)SegTree[x].Max=val;
    if(SegTree[x].left==i&&SegTree[x].right==i)
        return;
    if(i<=SegTree[x<<1].right)//左孩子
        update(x<<1,i,val);
    else
        update((x<<1)+1,i,val);//右孩子
    return ;
}
int query(int x ,int left,int right)//区间查询 done
{

    /*if(SegTree[x].left==left&&SegTree[x].right==right)
        return SegTree[x].Max;//区间刚好完全重合了
    int mid=(SegTree[x].left+SegTree[x].right)>>1;
    if(right<=mid)//完全在左孩子的区域
        return query(x<<1,left,right);//注意第二第三个传入的参数到底是什么!!
    else if(left>mid)//完全在右孩子的区域
        return query((x<<1)+1,left,right);
    else//左右孩子都涉及了
    {
        int tempa=query(x<<1 , left , mid) ;
        int tempb=query( (x<<1) + 1 , mid + 1 , right );
        if(tempa > tempb)//取两个子区间的最大值
            return  query( x<<1 , left , mid);
        else
            return  query((x<<1) + 1 , mid + 1 , right);
    }
    */
    //与原来的我的代码不同在什么地方....
     int mid ;
    // 若此区间与 x 所管理的区间无交集
    if (SegTree[x].left > right || SegTree[x].right < left)
        return 0 ;
    // 若此区间包含 root 所管理的区间
    if (left <= SegTree[x].left && SegTree[x].right <= right)
        return SegTree[x].Max ;

    // 若此区间与 root 所管理的区间部分相交

    int a, b ;  // 不能这样 max (find(...), find(...));
    a = query (2 * x, left, right) ;
    b = query (2 * x + 1, left, right) ;

    return max (a, b) ;
}
int main()
{
    int n, m,A,b;
    while (~scanf("%d%d", &n, &m))
    {
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &a[i]);
        }
            build(1, 1, n);
        for (int i = 1; i <= m; i++)
        {
            char c;
            scanf("%s", &c);
            scanf("%d%d", &A, &b);
            if (c == 'Q')printf("%d\n", query(1, A, b));
            else if (c == 'U') update(1,A,b);
        }
    }

	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值