很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。
这让很多学生很反感。
不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。
这让很多学生很反感。
不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。
在每个测试的第一行,有两个正整数 N 和 M ( 0<N<=200000,0<M<5000 ),分别代表学生的数目和操作的数目。
学生ID编号分别从1编到N。
第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。
接下来有M行。每一行有一个字符 C (只取'Q'或'U') ,和两个正整数A,B。
当C为'Q'的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。
当C为'U'的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。
5 6 1 2 3 4 5 Q 1 5 U 3 6 Q 3 4 Q 4 5 U 2 9 Q 1 5
5
6
5
9
Huge input,the C function scanf() will work better than cin
线段树模板题 线段树的效率真的堪忧啊...有空希望能看一下主席树 败者树这些...以及zkw的线段树...
代码如下(线段树的时间复杂度怎么看??)
//TLE 改了之后就AC 但还是要再理解一下
#include <iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=200000;
int a[maxn];
//维护最大值
//问题 假如更改的时候把最大值修改为小于第二大的值 那不会有问题???
struct node
{
int Max,left,right;//区间的值 左右端点
}SegTree[maxn<<2];
void build(int x,int left,int right)//done
{
SegTree[x].left = left;
SegTree[x].right = right;
if(left == right)//递归到叶子节点了
{
SegTree[x].Max=a[left];
return ;
}
int mid=(left+right)>>1;
build((x<<1),left ,mid);
build((x<<1) + 1,mid+1,right);
if(SegTree[x<<1].Max > SegTree[(x<<1)+1].Max)
SegTree[x].Max = SegTree[x<<1].Max;
else
SegTree[x].Max = SegTree[(x<<1)+1].Max;//选两者中较大的为Max
//建树的地方????
}
void update(int x,int i,int val)//done
{
if(val > SegTree[x].Max)SegTree[x].Max=val;
if(SegTree[x].left==i&&SegTree[x].right==i)
return;
if(i<=SegTree[x<<1].right)//左孩子
update(x<<1,i,val);
else
update((x<<1)+1,i,val);//右孩子
return ;
}
int query(int x ,int left,int right)//区间查询 done
{
/*if(SegTree[x].left==left&&SegTree[x].right==right)
return SegTree[x].Max;//区间刚好完全重合了
int mid=(SegTree[x].left+SegTree[x].right)>>1;
if(right<=mid)//完全在左孩子的区域
return query(x<<1,left,right);//注意第二第三个传入的参数到底是什么!!
else if(left>mid)//完全在右孩子的区域
return query((x<<1)+1,left,right);
else//左右孩子都涉及了
{
int tempa=query(x<<1 , left , mid) ;
int tempb=query( (x<<1) + 1 , mid + 1 , right );
if(tempa > tempb)//取两个子区间的最大值
return query( x<<1 , left , mid);
else
return query((x<<1) + 1 , mid + 1 , right);
}
*/
//与原来的我的代码不同在什么地方....
int mid ;
// 若此区间与 x 所管理的区间无交集
if (SegTree[x].left > right || SegTree[x].right < left)
return 0 ;
// 若此区间包含 root 所管理的区间
if (left <= SegTree[x].left && SegTree[x].right <= right)
return SegTree[x].Max ;
// 若此区间与 root 所管理的区间部分相交
int a, b ; // 不能这样 max (find(...), find(...));
a = query (2 * x, left, right) ;
b = query (2 * x + 1, left, right) ;
return max (a, b) ;
}
int main()
{
int n, m,A,b;
while (~scanf("%d%d", &n, &m))
{
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
}
build(1, 1, n);
for (int i = 1; i <= m; i++)
{
char c;
scanf("%s", &c);
scanf("%d%d", &A, &b);
if (c == 'Q')printf("%d\n", query(1, A, b));
else if (c == 'U') update(1,A,b);
}
}
return 0;
}