基于IEEE33配电网的多目标无功优化与设备运行计划,基于IEEE33配电网的多目标无功优化和光伏消纳率最优的设备运行计划

配电网无功优化 基于IEEE33配电网的多目标无功优化,考虑了潮流计算,以节点电压偏移、网损成本和光伏消纳率为三个目标函数,决策产变量一天24小时内每小时光伏上网电量,两个无功补偿器出力,以及OLTC档位状态,采用多目标粒子群算法求解,并对帕累托解集进行归一化处理,最终得到使电压偏移,网损成本和光伏消纳率综合最优的各设备运行计划。
105

ID:2945714152378761

悟空的小虎裙


配电网无功优化是一项关键的技术,它可以有效提高配电网的运行效率和可靠性。在现代社会中,对电能的需求越来越大,为了满足这种需求,电力系统需要不断升级和改进。在传统的配电网中,无功功率是一种重要的电能消耗方式,它会导致电压下降、网损增加等问题。因此,通过优化配电网的无功功率分配,可以有效地改善电力系统的性能。

本文针对配电网的无功优化问题展开研究,基于IEEE33配电网的多目标无功优化。具体而言,我们考虑了潮流计算、节点电压偏移、网损成本和光伏消纳率等多个指标,将其作为优化的目标函数。通过优化这些目标函数,我们可以得到一个最优的配电网运行计划,从而使电压偏移、网损成本和光伏消纳率达到最佳的综合性能。

在本文中,我们使用了多目标粒子群算法来求解配电网无功优化问题。该算法基于粒子群算法,通过不断迭代和更新粒子的位置和速度,来搜索全局最优解。在每一个迭代过程中,我们根据目标函数的值来评估每个粒子的适应度,并选择适应度较高的粒子。通过不断迭代和更新粒子的位置和速度,最终可以得到一组非支配解,即帕累托解集。

为了进一步优化帕累托解集,我们对其进行归一化处理。通过将每个解的目标函数值除以其对应目标函数的范围,可以将不同目标函数的值转化为相对值,使其在同一尺度上进行比较。然后,根据归一化后的目标函数值,我们可以选择出使电压偏移、网损成本和光伏消纳率综合最优的解。

除了多目标粒子群算法,我们还考虑了一些其他因素。例如,我们需要确定光伏上网电量、无功补偿器出力和OLTC档位状态等决策变量。通过将这些决策变量与目标函数结合起来,并通过多目标粒子群算法进行求解,我们可以得到一个最优的配电网运行计划。

总之,本文通过对配电网无功优化问题的研究,基于IEEE33配电网的多目标无功优化,考虑了潮流计算、节点电压偏移、网损成本和光伏消纳率等多个指标,采用多目标粒子群算法求解,并对帕累托解集进行归一化处理,最终得到使电压偏移、网损成本和光伏消纳率综合最优的各设备运行计划。这些研究结果对于优化配电网的无功功率分配具有重要的理论和实际意义。通过改善配电网的运行性能,可以提高电力系统的可靠性和稳定性,进一步促进电力系统的可持续发展。

【相关代码,程序地址】:http://fansik.cn/714152378761.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值