基于线性支持向量机的词嵌入文本分类torch案例

在这里插入图片描述

一、前言

简介线性支持向量机,并使用线性支持向量机实现文本分类, 输入文本通过词嵌入方法转换成浮点张量,给出torch案例

线性支持向量机(Linear Support Vector Machine,简称Linear SVM)是一种常用的分类算法,它通过一个超平面来将数据分成两类。对于线性可分的数据集,线性SVM能够找到一个最优的超平面,使得距离最近的数据点到这个超平面的距离最大化,从而使得分类边界更加稳定。

二、项目介绍

在文本分类任务中,我们可以使用线性SVM来将文本分成两类,比如正面和负面。首先需要将文本转换成数字表示,这可以通过词嵌入(Word Embedding)方法来实现。词嵌入是将单词转换成向量表示的一种技术,它可以将单词之间的语义关系表达为向量之间的距离关系。在文本分类任务中,我们可以将每个单词转换成一个固定长度的向量,然后将所有单词的向量按照一定的顺序组合成一个文本向量,从而得到文本的数字表示。

三、Toy demo 项目展示

下面是使用PyTorch实现文本分类任务的示例代码,其中使用了线性SVM作为分类器:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np

class LinearSVM(nn.Module):
    def __init__(self, input_size):
        super(LinearSVM, self).__init__()
        self.linear = nn.Linear(input_size, 1)

    def forward(self, x):
        out = self.linear(x)
        return out

class TextDataset(torch.utils.data.Dataset):
    def __init__(self, texts, labels, word_embedding):
        self.texts = texts
        self.labels = labels
        self.word_embedding = word_embedding

    def __getitem__(self, index):
        text = self.texts[index]
        label = self.labels[index]
        text_vec = np.mean([self.word_embedding[word] for word in text.split() if word in self.word_embedding], axis=0)
        text_vec = torch.from_numpy(text_vec).float()
        return text_vec, label

    def __len__(self):
        return len(self.labels)

# 定义超参数
embedding_size = 50
lr = 0.01
num_epochs = 10

# 加载数据集
train_texts = ['good movie', 'not a good movie', 'bad movie', 'an excellent movie', 'i loved it', 'could have been better', 'completely ridiculous', 'not worth watching', 'it was okay', 'awesome movie']
train_labels = [1., -1, -1, 1, 1, -1, -1, -1, 0, 1]
word_embedding = {'good': np.random.rand(embedding_size), 'movie': np.random.rand(embedding_size), 'not': np.random.rand(embedding_size), 'bad': np.random.rand(embedding_size), 'an': np.random.rand(embedding_size), 'excellent': np.random.rand(embedding_size), 'i': np.random.rand(embedding_size), 'loved': np.random.rand(embedding_size), 'it': np.random.rand(embedding_size), 'could': np.random.rand(embedding_size), 'have': np.random.rand(embedding_size), 'been': np.random.rand(embedding_size), 'better': np.random.rand(embedding_size), 'completely': np.random.rand(embedding_size), 'ridiculous': np.random.rand(embedding_size), 'worth': np.random.rand(embedding_size), 'watching': np.random.rand(embedding_size), 'was': np.random.rand(embedding_size), 'okay': np.random.rand(embedding_size), 'awesome': np.random.rand(embedding_size)}
train_dataset = TextDataset(train_texts, train_labels, word_embedding)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=2, shuffle=True)

# 定义模型、损失函数和优化器
model = LinearSVM(embedding_size)
criterion = nn.HingeEmbeddingLoss()
optimizer = optim.SGD(model.parameters(), lr=lr)

# 训练模型
for epoch in range(num_epochs):
    for batch_data in train_dataloader:
        # print(batch_data)
        x, y = batch_data
        print("这里这里", y)

        x = x.unsqueeze(1)
        model.zero_grad()
        out = model(x)
        loss = criterion(out.squeeze(), y.float())
        loss.backward()
        optimizer.step()
    print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# 测试模型



    test_texts = ['good film', 'bad film']
    test_labels = [1, -1]
    test_dataset = TextDataset(test_texts, test_labels, word_embedding)
    test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=2, shuffle=False)

    with torch.no_grad():
        for batch_data in test_dataloader:
            x, y = batch_data
            x = x.unsqueeze(1)
            out = model(x)
            predicted = torch.sign(out.squeeze())
            print('Predicted:', predicted)
            print('True:', y)

四、运行结果

这里这里 tensor([-1,  1])
这里这里 tensor([ 1, -1])
这里这里 tensor([1., 1.], dtype=torch.float64)
这里这里 tensor([ 0, -1])
这里这里 tensor([-1, -1])
Epoch [1/10], Loss: 0.8326
Predicted: tensor([1., 1.])
True: tensor([ 1, -1])
这里这里 tensor([-1, -1])
这里这里 tensor([-1, -1])
这里这里 tensor([ 1, -1])
这里这里 tensor([1, 1])
这里这里 tensor([1., 0.], dtype=torch.float64)
Epoch [2/10], Loss: 0.7192
Predicted: tensor([1., 1.])
True: tensor([ 1, -1])
这里这里 tensor([1., 1.])
这里这里 tensor([-1,  0])
这里这里 tensor([-1, -1])
这里这里 tensor([1, 1])
这里这里 tensor([-1, -1])
Epoch [3/10], Loss: 0.7749
Predicted: tensor([1., 1.])
True: tensor([ 1, -1])
这里这里 tensor([-1,  1])
这里这里 tensor([ 1, -1])
这里这里 tensor([ 0, -1])
这里这里 tensor([-1,  1])
这里这里 tensor([ 1., -1.], dtype=torch.float64)
Epoch [4/10], Loss: 0.5134
Predicted: tensor([1., 1.])
True: tensor([ 1, -1])
这里这里 tensor([ 1., -1.], dtype=torch.float64)
这里这里 tensor([-1,  1])
这里这里 tensor([-1, -1])
这里这里 tensor([0, 1])
这里这里 tensor([-1,  1])
Epoch [5/10], Loss: 0.3517
Predicted: tensor([1., 1.])
True: tensor([ 1, -1])
这里这里 tensor([-1,  1])
这里这里 tensor([1., 0.], dtype=torch.float64)
这里这里 tensor([ 1, -1])
这里这里 tensor([-1, -1])
这里这里 tensor([-1,  1])
Epoch [6/10], Loss: 0.4878
Predicted: tensor([1., 1.])
True: tensor([ 1, -1])
这里这里 tensor([-1,  1])
这里这里 tensor([1, 1])
这里这里 tensor([-1, -1])
这里这里 tensor([-1.,  1.])
这里这里 tensor([ 0, -1])
Epoch [7/10], Loss: 0.6830
Predicted: tensor([1., 1.])
True: tensor([ 1, -1])
这里这里 tensor([-1,  1])
这里这里 tensor([-1, -1])
这里这里 tensor([-1,  1])
这里这里 tensor([0., 1.])
这里这里 tensor([ 1, -1])
Epoch [8/10], Loss: 0.5232
Predicted: tensor([1., 1.])
True: tensor([ 1, -1])
这里这里 tensor([0, 1])
这里这里 tensor([ 1, -1])
这里这里 tensor([-1, -1])
这里这里 tensor([ 1, -1])
这里这里 tensor([ 1., -1.], dtype=torch.float64)
Epoch [9/10], Loss: 0.4531
Predicted: tensor([1., 1.])
True: tensor([ 1, -1])
这里这里 tensor([-1, -1])
这里这里 tensor([1, 1])
这里这里 tensor([-1,  1])
这里这里 tensor([-1,  0])
这里这里 tensor([-1.,  1.])
Epoch [10/10], Loss: 0.3971
Predicted: tensor([1., 1.])
True: tensor([ 1, -1])

五、损失函数

介绍nn.HingeEmbeddingLoss并使用

nn.HingeEmbeddingLossPyTorch中用于计算支持向量机的损失函数之一。它的作用是通过一个间隔边界将正样本和负样本分开。具体来说,该损失函数使用了一个margin参数,表示正负样本之间的间隔边界,然后计算正样本与该边界之间的距离和负样本与该边界之间的距离,并将它们相加。

该损失函数的数学公式如下:

l o s s ( x , y ) = 1 N ∑ i = 1 N max ⁡ ( 0 , − y i ( x i ⋅ w − b ) + m a r g i n ) loss(x,y) = \frac{1}{N}\sum_{i=1}^{N} \max(0, -y_i(x_i\cdot w - b) + margin) loss(x,y)=N1i=1Nmax(0,yi(xiwb)+margin)

其中, x x x表示输入样本, y y y表示对应的标签, w w w表示模型的权重, b b b表示模型的偏置, N N N表示样本数量, m a r g i n margin margin表示间隔边界。

在计算损失时,如果一个样本被正确地分类,则该样本的损失为0,否则根据该样本的标签和预测值,计算出该样本的距离,然后与 m a r g i n margin margin进行比较,得到该样本的损失值。

下面是一个使用nn.HingeEmbeddingLoss进行二分类任务的例子,其中使用的数据集为sklearn中的鸢尾花数据集:

import torch
import torch.nn as nn
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 加载数据集并进行预处理
iris = load_iris()
X, y = iris.data, iris.target
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# 定义模型、损失函数和优化器
model = nn.Linear(4, 1)
criterion = nn.HingeEmbeddingLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 100
batch_size = 16
for epoch in range(num_epochs):
    for i in range(0, len(X_train), batch_size):
        inputs = torch.FloatTensor(X_train[i:i+batch_size])
        labels = torch.FloatTensor(y_train[i:i+batch_size])
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs.squeeze(), labels.float())
        loss.backward()
        optimizer.step()

    # 计算测试集准确率
    with torch.no_grad():
        inputs = torch.FloatTensor(X_test)
        labels = torch.FloatTensor(y_test)
        outputs = model(inputs).squeeze()
        predicted = torch.sign(outputs)
        accuracy = (predicted == labels).sum().item() / len(y_test)
    print(f"Epoch {epoch+1}: Loss={loss.item():.4f}, Accuracy={accuracy:.4f}")

在上面的例子中,首先加载鸢尾花数据集并进行标准化处理。然后定义了一个包含一个线性层的模型,使用nn.HingeEmbeddingLoss是一个PyTorch中的损失函数,用于支持向量机(SVM)学习。在SVM中,目标是将两个类别的数据分开,并且在最大化间隔的同时最小化错误分类的数量。Hinge损失函数是一种常用的SVM损失函数,它对正确分类的样本给予0损失,对于错误分类的样本给予一个非零的损失,损失随着距离正确分类边界的距离线性增加。

HingeEmbeddingLoss需要输入一个标量值作为阈值,将大于等于该阈值的样本视为正样本,将小于该阈值的样本视为负样本。具体而言,对于一个大小为 N N N的批次,标签 y y y应该是一个大小为 N N N的张量,其中1表示正类,-1表示负类。如果 y i = 0 y_i = 0 yi=0,则样本 i i i将被忽略,即不计入损失函数中。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Python提供了多个库和框架来实现支持向量机(Support Vector Machine, SVM)的二分类任务。以下是一些常用的库和框架: 1. scikit-learn: scikit-learn是Python中最常用的机器学习库之一,它提供了一个简单而强大的API来实现各种机器学习算法,包括支持向量机。你可以使用`sklearn.svm.SVC`类来创建一个支持向量机分类器,设置相应的参数,并使用`fit`方法拟合模型。 ```python from sklearn import svm # 创建一个SVC分类器 clf = svm.SVC() # 训练模型 clf.fit(X_train, y_train) # 使用模型进行预测 y_pred = clf.predict(X_test) ``` 2. TensorFlow: TensorFlow是一个功能强大的深度学习框架,但也提供了一些用于传统机器学习算法的API。你可以使用`tf.contrib.learn.SVM`类来创建一个支持向量机分类器。 ```python import tensorflow as tf # 创建一个SVM分类器 svm = tf.contrib.learn.SVM() # 训练模型 svm.fit(X_train, y_train) # 使用模型进行预测 y_pred = svm.predict(X_test) ``` 3. PyTorch: PyTorch是另一个流行的深度学习框架,它也提供了一些用于传统机器学习算法的API。你可以使用`torchsvm`包来实现支持向量机。 ```python import torch from torchsvm import SVM # 创建一个SVM分类器 svm = SVM() # 训练模型 svm.fit(X_train, y_train) # 使用模型进行预测 y_pred = svm.predict(X_test) ``` 这些是一些常用的库和框架,你可以根据自己的需求选择适合的工具来实现支持向量机的二分类任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值