先从网络中下载参数,将参数所有元素整合在一个向量中,对每个元素添加一定的噪声,接下来还原向量中的元素到参数的对应位置,并用加噪后的参数回填到模型中,最后检查一遍回填情况。
假设在函数里面构造模型
import torch
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(256, 128)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
model = MyModel()
# 获取深度网络的所有参数
parameters = list(model.parameters())
# 将参数转换为一个向量
param_vector = torch.cat([p.view(-1) for p in parameters], dim=0)
print(param_vector[:20])
# 在向量的每个元素上随机添加噪声
noise = torch.randn_like(param_vector)
noisy_param_vector = param_vector + noise
# print(noise.shape, noisy_param_vector.shape)
print(noisy_param_vector[:20])
# 将添加噪声的向量还原到对应位置的深度网络的参数中
start_idx = 0
for i, param in enumerate(parameters):
# 计算当前参数的元素个数
num_elements = param.numel()
# 从噪声参数中截取当前参数的元素
current_noise = noisy_param_vector[start_idx:start_idx + num_elements]
# 重新调整形状为当前参数的形状
current_noise = current_noise.view(param.shape)
# 将还原后的参数加载到深度网络中
param.data.copy_(current_noise)
# 更新起始索引
start_idx += num_elements
parametersa = list(model.parameters())
# 将参数转换为一个向量
param_vectora = torch.cat([p.view(-1) for p in parametersa], dim=0)
print(param_vectora[:20])
假设已有模型
# 下载和上传参数
def renew_model_param(DeepNet):
# 获取深度网络的所有参数
parameters = list(DeepNet.parameters())
# 将参数转换为一个向量
param_vector = torch.cat([p.view(-1) for p in parameters], dim=0)
# print(param_vector[:20])
# 在向量的每个元素上随机添加噪声
noise = torch.randn_like(param_vector)
noisy_param_vector = param_vector + noise
# print(noise.shape, noisy_param_vector.shape)
# print(noisy_param_vector[:20])
# 将添加噪声的向量还原到对应位置的深度网络的参数中
start_idx = 0
for i, param in enumerate(parameters):
# 计算当前参数的元素个数
num_elements = param.numel()
# 从噪声参数中截取当前参数的元素
current_noise = noisy_param_vector[start_idx:start_idx + num_elements]
# 重新调整形状为当前参数的形状
current_noise = current_noise.view(param.shape)
# 将还原后的参数加载到深度网络中
param.data.copy_(current_noise)
# 更新起始索引
start_idx += num_elements
parametersa = list(DeepNet.parameters())
# 将参数转换为一个向量
param_vectora = torch.cat([p.view(-1) for p in parametersa], dim=0)
# print(param_vectora[:20])
# 断言两个张量的值在一定误差范围内相等
torch.testing.assert_allclose(noisy_param_vector, param_vectora, rtol=1e-3, atol=1e-3)
输出
tensor([ 0.0411, 0.0229, 0.0049, -0.0484, 0.0459, 0.0118, -0.0562, -0.0538,
0.0094, -0.0068, 0.0483, -0.0045, -0.0097, 0.0123, 0.0309, 0.0003,
-0.0542, -0.0463, -0.0452, -0.0189], grad_fn=<SliceBackward0>)
tensor([-0.4091, -1.7616, 0.1588, -0.3146, -1.9634, -0.8395, 0.0965, -1.9828,
-0.9309, -0.9996, -1.1171, 0.0702, 0.5957, -0.2442, 0.8054, 0.3737,
-0.6276, 1.9177, -0.2753, 0.9166], grad_fn=<SliceBackward0>)
tensor([-0.4091, -1.7616, 0.1588, -0.3146, -1.9634, -0.8395, 0.0965, -1.9828,
-0.9309, -0.9996, -1.1171, 0.0702, 0.5957, -0.2442, 0.8054, 0.3737,
-0.6276, 1.9177, -0.2753, 0.9166], grad_fn=<SliceBackward0>)
在 PyTorch 中,你可以使用 torch.testing.assert_allclose() 函数来断言两个张量的值是否在一定的误差范围内相等。这对于由于浮点数精度等原因可能出现的微小差异非常有用。以下是使用这个函数的示例:
import torch
# 创建两个张量
tensor1 = torch.tensor([1.0, 2.0, 3.0])
tensor2 = torch.tensor([1.001, 2.001, 2.999])
# 断言两个张量的值在一定误差范围内相等
torch.testing.assert_allclose(tensor1, tensor2, rtol=1e-3, atol=1e-3)
在上面的示例中,rtol 参数表示相对误差容忍度,atol 参数表示绝对误差容忍度。你可以根据需要调整这些参数的值,以便于在实际情况下检查两个张量是否相等。如果两个张量的值在指定的误差范围内相等,那么程序会继续执行,否则会引发一个断言错误。