介绍
Unsupervised domain adaptation (UDA)无监督领域自适应不需要目标域任何标签数据,但是需要大量的目标域数据才能适应数据的分布,并没有任何的语义信息(标签)。半监督的领域适应只需要少量的目标域标签数据就能达到超过UDA的性能。实际应用中也更符合要求,我们可以在新的领域得到少量的标签数据。CCSA充分利用目标域少量(甚至一个)标签数据的语义信息,构建正负训练对,从而在目标域得到好的分类器。
论文和实现
论文:https://arxiv.org/abs/1709.10190v1
实现:https://github.com/samotiian/CCSA
https://github.com/dupanfei1/deep-transfer-learning-for-waveform/tree/master/semisupervised/CCSA_modu (个人修改)
模型架构
一、Domain adaptation