半监督领域自适应之CCSA--Unified Deep Supervised Domain Adaptation and Generalization

CCSA是一种半监督领域自适应方法,通过少量目标域标签数据,利用正负训练对优化分类器,实现源域与目标域的语义对齐。论文和实现链接提供,模型架构包括语义对齐、分隔和分类损失,以增强跨领域适应性。实验结果显示,经过CCSA适应,不同域的数据聚类效果显著改善。
摘要由CSDN通过智能技术生成

介绍

Unsupervised domain adaptation (UDA)无监督领域自适应不需要目标域任何标签数据,但是需要大量的目标域数据才能适应数据的分布,并没有任何的语义信息(标签)。半监督的领域适应只需要少量的目标域标签数据就能达到超过UDA的性能。实际应用中也更符合要求,我们可以在新的领域得到少量的标签数据。CCSA充分利用目标域少量(甚至一个)标签数据的语义信息,构建正负训练对,从而在目标域得到好的分类器。

论文和实现

论文:https://arxiv.org/abs/1709.10190v1
实现:https://github.com/samotiian/CCSA
https://github.com/dupanfei1/deep-transfer-learning-for-waveform/tree/master/semisupervised/CCSA_modu (个人修改)

模型架构

一、Domain adaptation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值