△表示为当前章节与后续重要章节的前置知识
※表示为当前章节的重点知识
○表示为重点知识下的高频考点内容
▽表示为考点内容的主要解题思路
第四章:级数
复数项级数
※复数项级数收敛的判断
假设复数列{αn} = {an+ibn}
{ α n } = { a n + i b n } \{α_n\}=\{a_n+ib_n\} { αn}={ an+ibn}
则级数表示为 ∑ n ∞ α n \sum\limits_{n}^{∞}α_n n∑∞αn
①收敛的充要条件为级数 a n a_n an与级数 b n b_n bn同时收敛
这样复数项级数收敛的问题就转换为两个实数级数收敛的问题
②收敛的必要条件为 lim n → + ∞ a n = 0 \lim\limits_{n{\rightarrow}+∞}a_n=0 n→+∞liman=0,这个可以帮助我们辅助判断一个复数项级数是否不收敛
绝对收敛和条件收敛
如果级数 ∑ n = 1 ∞ ∣ a n ∣ \sum\limits_{n=1}^{∞}|a_n| n=1∑∞∣an∣收敛,则称 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1∑∞an绝对收敛
若 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1∑∞an收敛而 ∑ n = 1 ∞ ∣ a n ∣ \sum\limits_{n=1}^{∞}|a_n| n=1∑∞∣an∣发散,则称 ∑ n = 1 ∞ a n \sum\limits_{n=1}^{∞}a_n n=1∑∞an条件收敛
复变函数项级数
复变函数项级数可以说是复数项级数的延拓,即给定一个复变函数列{fn(z)},级数记作Σn=1∞fn(z)即将确定的复数列更改为含参数的复数列,但分析方法类似
我们称Sn(z) = f1(z) + f2(z) + … + fn(z)为复变函数项级数 ∑ n = 1 ∞ f n ( z ) \sum\limits_{n=1}^{∞}f_n(z) n=1∑∞fn(z)的和函数,记作 S ( z ) = ∑ n = 1 ∞ f n ( z ) S(z)=\sum\limits_{n=1}^{∞}f_n(z) S(z)=n=1∑∞fn(z)
△幂级数
幂级数可以说是复变函数项级数的特例,即 f n ( z ) = c n − 1 z n − 1 f_n(z)=c_{n-1}z^{n-1} fn(z)=cn−1zn−1时,级数 ∑ n = 1 ∞ f n ( z ) \sum\limits_{n=1}^{∞}f_n(z) n=1∑∞fn(z)的特殊情况:
形如Σn=1∞cnzn = c0 + c1z1 + … + cnzn + …
由幂级数引出**收敛圆与收敛半径**这两个概念
※幂级数的收敛性
阿贝尔定理:
①如果幂级数 ∑ n = 1 ∞ c n z n \sum\limits_{n=1}^{∞}c_nz^n n=1∑∞cnzn在 z = z 0 z=z_0 z=z0(且 z 0 ≠ 0 z_0≠0 z0=0)处收敛,那么对满足|z| < |z0|的任何z,级数必绝对收敛
②如果幂级数 ∑ n = 1 ∞ c n z n \sum\limits_{n=1}^{∞}c_nz^n n=1∑∞cnzn在 z = z 0 z=z_0 z=z0(且 z 0 ≠ 0 z_0≠0 z0=0)处发散,那么对满足|z| > |z0|的任何z,级数必发散
真题1:设有级数 ∑ n = 0 ∞ a n \sum\limits_{n=0}^{∞}a_n n=0∑∞an。如果 lim n → ∞ a n = 0 \lim\limits_{n{\rightarrow}∞}a_n=0 n→∞liman=0,那么级数 ∑ n = 0 ∞ a n \sum\limits_{n=0}^{∞}a_n n=0∑∞an收敛性如何?
lim n → ∞ a n = 0 \lim\limits_{n{\rightarrow}∞}a_n=0 n→∞liman=0只是收敛的必要条件,所以无法根据这个条件判断级数 ∑ n = 0 ∞ a n \sum\limits_{n=0}^{∞}a_n n=0∑∞an收敛性
○求幂级数的收敛半径
①达朗贝尔(这个涉及的居多):
又称为比值判别法
幂级数 ∑ n = 1 ∞ c n z n \sum\limits_{n=1}^{∞}c_nz^n n=1∑∞cnzn的系数cn合于(即符合)
lim n → + ∞ ∣ c n + 1 c n ∣ = l \lim\limits_{n{\rightarrow}+∞}|\frac{c_{n+1}}{c_n}|=l n→+∞lim∣cncn+1∣=l
②柯西
又称为根值判别法
幂级数 ∑ n = 1 ∞ c n z n \sum\limits_{n=1}^{∞}c_nz^n n=1∑∞cnzn的系数cn合于(即符合)
lim n → + ∞ ∣ c n ∣ n = l \lim\limits_{n{\rightarrow}+∞}\sqrt[n]{|c_n|}=l n→+∞limn∣cn∣=l
那么都可以说当0 < l < + ∞时,级数 ∑ n = 1 ∞ c n z n \sum\limits_{n=1}^{∞}c_nz^n n=1∑∞cnzn的收敛半径 R = 1 l R=\frac{1}{l} R=l1
特别的,当l = 0时,R = +∞ ;当l = +∞时,R = 0
真题1:
若幂级数 ∑ n = 0 + ∞ a n ( z − 1 ) n \sum\limits_{n=0}^{+∞}a_n(z-1)^n n=0∑+∞an(z−1)n在 z = 3 z=3 z=3处收敛而在 z = 1 − 2 i z=1-2i z=1−2i处发散,则其收敛半径 R R R = ?
本题实际上是一道概念题,原式幂级数的形式为 ∑ n = 0 + ∞ c n ( z − z 0 ) n \sum\limits_{n=0}^{+∞}c_n(z-z_0)^n n=0∑+∞cn(z−z0)n
则存在一个 R R R使得 ∣ z − z 0 ∣ = R |z-z_0|=R ∣z−z0∣=R内部绝对收敛,在外部绝对发散
由于幂级数 ∑ n = 0 + ∞ a n ( z − 1 ) n \sum\limits_{n=0}^{+∞}a_n(z-1)^n n=0∑+∞an(z−1)n的 z 0 z_0 z0为1
故当 z = 3 z=3 z=3时有 ∣ 3 − 1 ∣ = 2 |3-1|=2 ∣3−1∣=2,使其收敛说明 R ≥ 2 R≥2 R≥2
而当 z = 1 − 2 i z=1-2i z=1−2i时有 ∣ 1 − 2 i − 1 ∣ = 2 |1-2i-1|=2 ∣1−2i−1∣=2,使其发散说明 R ≤ 2 R≤2 R≤2
则有 R = 2 R=2 R=2时符合题意
幂级数的运算与性质
略
※泰勒级数
△泰勒定理
设函数f(z)在区域D内解析,|ξ-z0| = r为D内的一个圆周,它的内部全部属于D,记这个圆周为K,z为K内任一点,
则f(z)能在K内展开为幂级数
f ( z ) = ∑ n = 0 ∞ c n ( z − z 0 ) n f(z)=\sum\limits_{n=0}^{∞}c_n(z-z_0)^n f(z)=n=0∑∞cn(z−z0)n
其中
系数cn (积分形式)
c n = 1 2 π i ∮ K f ( ξ ) d ξ c_n=\frac{1}{2πi}\oint_Kf(ξ)dξ cn=2πi1∮Kf(ξ)dξ
或(微分形式,常用)
c n = 1 n ! f ( n ) ( z 0 ) c_n=\frac{1}{n!}f^{(n)}(z_0) cn=n!1f(n)(z0)
即我们常表示f(z)在 z = z 0 z=z_0 z=z0处的的泰勒展开式为
f ( z ) = ∑ n = 0 ∞ 1 n ! f ( n ) ( z 0 ) ( z − z 0 ) n f(z)=\sum\limits_{n=0}^{∞}\frac{1}{n!}f^{(n)}(z_0)(z-z_0)^{n} f(z)=n=0∑∞n!1f(n)(z0)(z−z0)n
其右端的级数我们称为f(z)在z = z0处泰勒级数,注意,任何解析函数展开成幂级数的结果就是泰勒展开式,且结果唯一
泰勒展开式在点 z 0 z_0 z0的收敛半径为 z 0 z_0 z0到距离其最近的奇点距离 d d d,即在|z-z0| < d的范围内均成立
○泰勒级数与高阶导函数
如果一个函数在某点具有所有阶的导数,那么这个函数就可以用泰勒级数展开
在泰勒级数的展开中,每一项的系数都是函数在该点的相应阶导数除以阶乘
真题1:函数