高等数学下

文章详细阐述了多元函数微分学的概念,包括极限、连续性、偏导数和全微分。讨论了隐函数存在定理、拉格朗日乘数法在优化问题中的应用,以及二重积分的计算和几何意义。此外,还涉及常微分方程的解法,如泰勒公式、线性微分方程和级数理论,包括幂级数和向量代数的相关概念。
摘要由CSDN通过智能技术生成

多元函数微分学

在这里插入图片描述
聚点:极限趋向的目标点
在这里插入图片描述
多元函数微分法还有一个方法是全微分形式不变
在这里插入图片描述

点集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

极限

多元函数的极限是不能用列举法算出来的
一元函数只要算左右极限即可

在这里插入图片描述

第一种定义:定义域和去心邻域的交(所有路径都得算)
第二种定义就是去心邻域(只算能走的路)

在这里插入图片描述
考研用第一种定义

连续

在这里插入图片描述

偏导数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

多元函数的可微

在这里插入图片描述
判别是否可微
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

多元函数微分法

在这里插入图片描述

全微分形式不变

这个公式非常重要,隐函数存在定理就是用的这个方法
F(x,y,z)可以看作x,y,z互不相干的变量,也就是作为中间变量123
在这里插入图片描述
在这里插入图片描述

多元函数隐函数

在这里插入图片描述

隐函数存在定理

在这里插入图片描述
在这里插入图片描述
F(x,y,z)中,x y z都是独立项,字母其实只是个符号,写成123也没问题

反解原函数

在这里插入图片描述
在这里插入图片描述

极值最值

在这里插入图片描述
在这里插入图片描述
费马定理的推广,见中值定理篇
在这里插入图片描述
为什么是必要条件,给出反例

多元函数极值的可疑点:偏导数全为0的点和偏导数不存在的点

无条件极值

在这里插入图片描述

无条件极值的证明

方法是使用泰勒公式推导出来的

一元函数极值点判别

在这里插入图片描述
需要用到施瓦兹定理:如果函数的二阶偏导数在一点处连续,那么它的二阶混合偏导数相等,也就是 f x y ′ = f y x ′ f'_{xy}=f'_{yx} fxy=fyx

施瓦兹定理在这提到

预备知识足够了,接下来,就是证明过程

在这里插入图片描述
由泰勒公式展开拉格朗日余数到二阶偏导数
得到 f ( x , y ) − f ( x 0 , y 0 ) = g ( ξ , η ) f(x,y)-f(x_0,y_0)=g(ξ,η) f(x,y)f(x0,y0)=g(ξ,η)
在这里插入图片描述
在这里插入图片描述

4B2-4AC<0才会有g(ξ,η)的值恒正或者恒负
简化之后就是AC-B2>0
A>0的时候开口向上,恒正,邻域的数比这个点的值大,极小值
A<0的时候开口向下,恒负,邻域的数比这个点的值小,极大值
(二次型Δ式子成立,A和C必定是同号的,换成C的符号判断也一样)

AC-B2<0时有正有负,必定不是极值
AC-B2=0时可能为0,0的时候引出了O(1)无穷小项,无穷小项的正负性在这个公式没有考虑,所以无法判别

拉格朗日乘数法

在这里插入图片描述
在这里插入图片描述

拉格朗日乘数法证明

在这里插入图片描述
要解决的问题,已知空间中两个平面的方程(称为条件)
他们相交的部分是一条直线

求原点到这条直线的最小距离(称为目标函数)

在这里插入图片描述
约束条件用G函数和H函数表示

使用要求,目标函数和GH都在相交部分有连续偏导数

在这里插入图片描述
构造雅各比矩阵
τ ( 掏 ) = ( G x G y G z H x H y H z ) τ(掏)=\begin{pmatrix} G_x & G_y & G_z\\ H_x & H_y & H_z \end{pmatrix} τ()=(GxHxGyHyGzHz)

使用要求,该雅各比矩阵在满足约束条件的点处是满秩的

引用知乎大佬对雅各比矩阵满秩的理解:rank为2,保证了F和G两个方程都提供了有用的信息,那么xyz之中只有一个自由度,如果rank为1,那么实际上只有一个有用的方程做约束,那么xyz之中有两个自由度,那么就没办法把其中两个变元作为第三个变元的函数。

应该就是要求GH两个函数的偏导数不全部线性相关

那么根据一些神秘的行列式定理,就存在两个约束条件消元后,得到y(x),z(x)

目标函数f(x,y,z)就转化为f[x,y(x),z(x)]

那么原先(x0,y0,z0)的条件极值点,就转化为了x0的无条件极值点

在这里插入图片描述
新的目标函数的导数就可以算了

在这里插入图片描述
因为是极值点,所以这一点导数为0
这一点导数又等于这一点的梯度(三个轴的导数加一起形成的向量)乘这一点的切向量

只有法向量乘切向量等于0

所以得出这一点的梯度是法向量

在这里插入图片描述
gradf(x0,y0,z0),也就是这点的梯度,一定是在两个约束函数平面在该点的法向量张成的平面上的

那么gradf可以用这两个法向量线性表示
在这里插入图片描述
grad是三维向量,所以得到的是三个等式

在这里插入图片描述
在这里插入图片描述

二重积分

在这里插入图片描述

二重积分的几何意义

在这里插入图片描述
二重积分是曲顶柱体
微元是一个长宽都趋近于0的曲顶柱体
一重积分是长宽有一个趋近于0的扁曲顶柱体

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

普通对称性

在这里插入图片描述
在这里插入图片描述

轮换对称性

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

有点困惑的题目,为什么取小于号而不是小于等于,没讲清楚
到I3的时候已经等于0了
其实奇数次都等于0,偶数次都大于奇数次,偶数次内部可以比较

在这里插入图片描述

定义域

在这里插入图片描述

直角坐标系

在这里插入图片描述
在这里插入图片描述

极坐标系

在这里插入图片描述
在这里插入图片描述

什么题目适合选极坐标系

在这里插入图片描述
在这里插入图片描述

需要换积分次序的情况

在这里插入图片描述
画定义域D的图像,换积分次序

用二重积分处理一元积分的情况

在这里插入图片描述
在这里插入图片描述

综合运用《真题》

在这里插入图片描述
课上讲的方法。。用了对称性反而更难算了
我直接用极坐标系分段两边算出来答案一样。

二元函数凑微分

在这里插入图片描述
在这里插入图片描述

常微分方程

在这里插入图片描述
在这里插入图片描述

基本概念

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通解不是全部解
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一阶线性

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

要给出通解中C的取值范围

在这里插入图片描述
完美解法,讨论除了通解的情况,如果也可以用通解的函数表达,也整合到C的取值范围里

强化班

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

高阶线性

在这里插入图片描述

什么是二阶?
最高阶数为2,而且系数为1

什么是变系数?
其他阶数的系数不再只是常数,也可能是x的函数

什么是线性?
所有阶数都是一次方的

在这里插入图片描述
齐次的通解是两个线性无关的解的线性组合

证明如下,援引汤家凤老师的证明
在这里插入图片描述

非齐次的通解是齐次的通解加上一个特解

证明如下,援引汤家凤老师的证明
在这里插入图片描述

汤家凤老师额外讲了一个性质,两个非齐次的特解相减,得到齐次的通解
在这里插入图片描述

两个非齐次的特解相加,结果的自由项等于两个非齐次方程的自由项相加
在这里插入图片描述
在这里插入图片描述

二阶常系数齐次线性微分方程的通解

在这里插入图片描述

在这里插入图片描述

Δ等于0时,可以推导出来λ=-p/2

b站<隐姓埋名的刘老>的复数入门

欧拉公式证明
在这里插入图片描述
相似三角形的辅助点是(1,0i)
在这里插入图片描述
在这里插入图片描述
此处使用了在x=0处展开的麦克劳林公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二阶常系数非齐次线性微分方程的特解

因为非齐次的通解是齐次的通解加上一个特解,所以怎么找到一个特解就是要考虑的问题
在这里插入图片描述
在这里插入图片描述

第一种自由项

在这里插入图片描述
在这里插入图片描述
k就代表 α是齐次方程的几个特征根
在这里插入图片描述
在这里插入图片描述

第二种自由项

在这里插入图片描述
在这里插入图片描述

n阶

在这里插入图片描述

设解函数的方法(汤家凤)

在这里插入图片描述
在这里插入图片描述

时隔很久之后更新的

无穷级数

数学分析

在这里插入图片描述
Sx 叫做部分和数列
在这里插入图片描述
在这里插入图片描述
余和数列
在这里插入图片描述
在这里插入图片描述
主要用于判断级数发散,极限不趋于0的时候

p级数与p数列极限 结合起来学习

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
接下来的问题是,如何衡量调和级数的大小
调和级数比哪个无穷大更大,比哪个无穷小更小
在这里插入图片描述
这两个极限都是趋近于e的,但是一个是单调递增,一个是单调递减
推导如下:
在这里插入图片描述
两个极限是相等的
在这里插入图片描述

e的产生
在这里插入图片描述
最终得到调和级数减掉lnx会收敛,他们相减之后趋近于欧拉常数,约为0.577215
在这里插入图片描述
p级数与反常p积分收敛和发散是等价的,后面会有积分收敛法来解释
在这里插入图片描述
极限点,子列趋近于一个值,这个值就是极限点
在这里插入图片描述
一个有界数列全部极限点的集合,它的上确界叫做数列的上极限,它的下确界叫做数列的下极限
在这里插入图片描述

性质

在这里插入图片描述
在这里插入图片描述
收敛一定通项为0
通项为0不一定收敛

通项不为0一定发散

敛散性判别

正项级数

在这里插入图片描述
在这里插入图片描述

调和级数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

交错级数

在这里插入图片描述
可以从正项开始,也可以从负项开始
张宇说在n充分大的时候单调不增就可以了

改变级数的任意项,不会改变级数的敛散性
可以把求和的n从一个特定的数开始取

任意项级数

在这里插入图片描述

绝对收敛与条件收敛

在这里插入图片描述

p级数

在这里插入图片描述

在这里插入图片描述

对于选择题,可以使用代入特殊值的方法
在这里插入图片描述
发散:代入 1 n \frac{1}{n} n1
收敛:代入 ( − 1 ) n 1 n (-1)^n\frac{1}{\sqrt{n}} (1)nn 1

收敛级数的性质

在这里插入图片描述
在这里插入图片描述

函数项级数

在这里插入图片描述
函数项级数 收敛域就是定义域

幂级数

在这里插入图片描述
敛散性
在这里插入图片描述
收敛域 是必考点
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

幂级数的收敛域

在这里插入图片描述

具体型

在这里插入图片描述
在这里插入图片描述

对于正项级数来说,如果比值小于1,是单调递减的,(我猜)可以推出最终趋近于0
在这里插入图片描述

抽象型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

幂级数求和函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

重要展开式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
用了牛顿莱布尼兹积分公式

在这里插入图片描述
在这里插入图片描述

我猜这里主要是运用收敛域不变。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这里其实用了牛顿莱布尼兹公式
变限积分上限x下限0 1/1+x^2 等于 F(x) - F(0)
也就等于arctanx + C - arctan0 - C 等于 arctanx
省略了好多步,导致迷惑了

函数展开成幂级数 (泰勒展开)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最后一步是泰勒公式,秒杀

一元函数微分学应用

相关变化率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

形心公式

在这里插入图片描述

弧长公式

在这里插入图片描述

旋转体表面积

和旋转体体积不同,这里不可以取垂直坐标轴方向的高作为表面积的高(误差不是无穷小量)在旋转体体积中,体积的高可以取垂直坐标轴方向

在这里插入图片描述

平行截面面积

在这里插入图片描述

物理应用

牛顿第二定律

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

变化率问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

欧拉方程与傅里叶级数 (数学一)

欧拉方程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

傅里叶级数

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

指的是第一类间断点

多元函数积分学基础知识(数学一)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

向量代数

在这里插入图片描述

点积

得到的是一个标量
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

叉积

由行列式得到的是一个向量
在这里插入图片描述

援引3B1B的讲解,
2阶行列式可以表示2个列向量组成的平行四边形的面积
叉积得到的向量,它的长度是由两个叉乘的向量组成的平行四边形的面积,也就是它们组成的列向量组的行列式

混合积

在这里插入图片描述
平行六面体的体积

向量的方向角和方向余弦

在这里插入图片描述
在这里插入图片描述

空格平面和直线

在这里插入图片描述

点法式:已知平面的法向量和一个平面上的点,可以得出平面方程。
推导过程:用平面上的任意一点(x,y,z),与(x0,y0,z0)构成向量,该向量一定与法向量垂直,那么他们的点积为0,得到平面方程

在这里插入图片描述

点向式:已知直线的单位向量为(l,m,n),还知直线上一点(x0,y0,z0),用平行运算,得到点向式

在这里插入图片描述
在这里插入图片描述
小崔说数给出的推导

在这里插入图片描述
在这里插入图片描述

空间曲线 空间曲面

空间曲线

在这里插入图片描述

投下来

在这里插入图片描述

在这里插入图片描述
张宇说投影曲线是伯努利双扭线
在这里插入图片描述

空间曲面

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
复杂函数马鞍面,逆时针旋转45度,得到简单函数马鞍面

在这里插入图片描述

转一圈

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第一个方程是 直线上一点与旋转后的点组成的向量,与旋转轴向量垂直,内积为0
第二个方程是 取旋转轴上一点(最简单的取原点),到直线上一点与旋转后的点的距离相等
第三个和第四个方程是 点在直线上,所以满足直线方程

在这里插入图片描述

切一刀

在这里插入图片描述
在这里插入图片描述

【待补充】这个地方张宇偷懒了没有给公式的推导过程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
然后拿L的两个方程加一下,得到2x+(a+1)y+b-z-3=0
得出答案a+1=-4; b-z-3=-z-5
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

场论初步

方向导数

在这里插入图片描述

偏导数是x方向,y方向这种指定方向的变化率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
t就是根号下(Δx方+Δy方+Δz方)
在多元函数微分学中提到过,这个t是一个衡量尺度,t趋近于0(这里是正0),除以t可以衡量更高阶的误差

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

梯度

在这里插入图片描述

方向导数与梯度的关系

在这里插入图片描述

方向导数等于梯度点乘方向向量

最大方向导数的方向与梯度方向一致

散度div 旋度rot

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三重积分 曲线曲面积分 (数学一)

这一部分有五大积分
三重积分
第一型曲线积分
第一型曲面积分
第二型曲线积分
第二型曲面积分

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三重积分

在这里插入图片描述
在这里插入图片描述
三重积分的定义域是一个实心的空间体
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三重积分的计算 - 直角坐标系

先一后二法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

后积先定限:后积的内容投影下来
在这里插入图片描述
限内画条线:从下往上画一条线
先交写下限:先交下曲面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

先二后一法

在这里插入图片描述
在这里插入图片描述
如果被积函数只含有z(一个自变量),则更为方便

后积先定限
限内截个面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
如果被积函数只含有z(一个自变量),在这里对截出来的面定义域做积分,结果就是截面的面积

在这里插入图片描述

三重积分的计算 - 柱面坐标系

前提条件是直角坐标系的先一后二法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
直角坐标系切换为极坐标系
dxdy=rdrdθ

在这里插入图片描述
绕着z轴转,z方向的值不变
绕着谁转,谁不变
然后把另外一个字母,写成另外两个字母的平方和开根号
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三重积分的计算 - 球面坐标系

球面坐标系知识补充【我的补充】

直角坐标系如何转化为球面坐标系
球面坐标系是怎么形成的
在这里插入图片描述
φ其实就是张宇说的”拉着一扇门“,它负责控制一个点在xoy方向(水平方向)的旋转
θ其实就是张宇说的”喇叭花开花“,它负责控制一个点在z方向球面移动,比如把这个球沿着xoy平面平行分割成一个一个微元,每个微元都是一个圆,θ变化意味着这个点从当前圆移动到另一个圆
r其实就是张宇说的”原点穿出一条射线“,它负责控制整个球体的大小,r变大也就意味着球面的点离原点的距离更远

仔细想想,其实就是经纬度
φ代表经度,地球上的经度有360度
而θ代表纬度,地球上的纬度有180度,它是由一个一个圈组成的,比如北极圈,南极圈这些,都是按纬度划分的

有了这些思考,就可以继续往下理解球面坐标系的微元了
dv= ?

在这里插入图片描述

dv是什么

dv是体积微元,是球面上的一个小块,可以视作一个立方体
由球半径增量、经度弧长增量、纬度弧长增量组成

dl(r)=dr

球半径增量也就是球面小块的厚度

dl(φ)=rsinθdφ

纬度不变,经度变化
我们要先从纬度来判断,点处于哪个圈上
从张宇的角度,拉开一扇门,你可以从不同的高度去拉,动作幅度(臂展)是不一样的
点目前所在的纬度圈的半径是rsinθ
经度变化是dφ,也就是弧度增量
转化为弧长增量就是rsinθdφ

dl(θ)=rdθ

纬度变化不需要考虑经度
从张宇的角度,喇叭花开花,你的臂展一定是完全展开的,也就是说只取决于球半径r
弧度增量转化为弧长增量就是rdθ

张宇正文

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
dv=在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
形心公式张宇说先欠着

在这里插入图片描述
在这里插入图片描述

第一型曲线积分

第一型曲线积分是一种有线密度的曲线,微元ds是弧微分,
弧微分可以写成 【根号下(1+y’(x)2+z’(x)2)】dx
也可以写成 【根号下(1+x’(y)2+z’(y)2)】dy
也可以写成 【根号下(1+x’(z)2+y’(z)2)】dz

由于y和z都可以由x表示,本质上第一型曲线积分还是一元函数积分
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一型曲面积分

第一型曲面积分是一种有面密度的曲面,微元ds是面微分,
面微分写成 【根号下(1+z’x2+z’y2)】dxdy

由于z可以由x,y表示,本质上第一型曲面积分还是二元函数积分
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
一型曲面积分:这种投影投成一条线的,大大的错误,因为它在一个标量场里
二型曲面积分是有可能投出一条线的,因为它在矢量场里,面朝向与通量方向正好垂直的时候,水是流不过这个面的

标量场和数量场是一个意思,矢量场和方向场是一个意思

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这里用直接算空间三角形的面积,三角形是正三角形,面积公式
3 4 a 2 \frac{\sqrt{3}}{4}a^2 43 a2
实际上用一投二代三计算,得到的也是同样的结果

一投二代三计算:投影前提是单值函数,就是对于每组不同的xy,对应的z(x,y)唯一,不会出现z(x0,y0)=z(x1,y1)

三重积分是大题,一型面积分是大题

我的补充

在这里插入图片描述
z(x,y)与f(x,y,z)是两个函数
前者是曲面函数,表示一个曲面的
后者是密度函数,表示曲面上每个点的密度

在这里插入图片描述
第一型曲面积分做的事情是,把三维空间曲面转化为二维空间平面
如图,上半球面经过转化之后,变成投影后的平面

张宇正文

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
也可以把x看成函数,把yz看成自变量,就是往yoz上投影
在这里插入图片描述
还可以把y看成函数,把xz看成自变量,就是往xoz上投影
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
转化为求二重积分,定义域是圆环,用极坐标系
在这里插入图片描述

重积分与第一型线面积分的应用

几何量

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

此处应该是第一型曲面积分
微元是截面的一个小块面积ds
由于投影的时候是投到xoy面上
那么z是函数,xy是自变量
那么截面的函数到底是锥面还是柱面呢?
换句话说,为什么用锥面的z而不是柱面的z呢?
在问了群友大佬之后明白了,
在这里插入图片描述
大佬:最终要求的还是锥面,是锥面向下投影,柱面只是截了个轮廓
我的理解:虽然两个面相交公共的曲线一样,但是要算的面积是锥面表面的面积
题干:锥面被截的面积

在这里插入图片描述

重心(质心)与形心

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

转动惯量

在这里插入图片描述
物体对哪个轴的转动惯量,就是到这个轴的距离的平方乘上dm,再做三重积分

在这里插入图片描述
在这里插入图片描述

引力

在这里插入图片描述
在这里插入图片描述
分母是距离的三次方

第二型曲线积分

第二型与第一型的区别在于:
第二型没有几何意义,只有物理意义

被积函数是向量场,在x方向和y方向分别有一个函数
微元是弧微分向量,就是有方向的弧微分
ds={dx,dy} 应该是写成一个向量了
要算做功,直接拿x方向的力场函数乘dx,拿y方向的力场函数乘dy
最后合起来,得到总做功
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一型曲线积分有对称性,第二型是矢量,一般不讨论对称性,遇到对称性问题用概念解决

在这里插入图片描述
上图,第一型曲线积分对称后得到结果是0
第二型曲线积分对称后得到结果是2倍的第一象限积分

在这里插入图片描述
数量场和向量场的解释

第二型曲线积分是在向量场中的
在这里插入图片描述
第二型曲线积分的微元是弧微分向量

在这里插入图片描述
p是水平分力的函数,q是垂直分力的函数
(和原本图像的AB曲线上的斜率没有关系,这里pq函数是向量场的函数)
在这里插入图片描述

参数方程

在这里插入图片描述

在这里插入图片描述

起点终点理解

二型曲线的定义域是x起点到终点,不再是从小到大
一型曲线的定义域是从小到大

在这里插入图片描述
∮ L = ∫ A B ‾ + ∫ B C ‾ + ∫ C A ‾ \oint_{L}=\int_{\overline{AB}}+\int_{\overline{BC}}+\int_{\overline{CA}} L=AB+BC+CA
以二型曲线积分AB做演示
第一步,y=1-x,x小于等于1,y大于等于零,绝对值符号可以展开
后面一项,x大于等于零,x的绝对值也可以展开
同时dy换成d(1-x)
∫ A B ‾ ∣ y ∣ d x + ∣ x ∣ d y = ∫ 1 0 ( 1 − x ) d x + x d ( 1 − x ) \int_{\overline{AB}}|y|dx+|x|dy=\int_{1}^{0}(1-x)dx+xd(1-x) ABydx+xdy=10(1x)dx+xd(1x)

第二步,y=1+x,x小于等于零但是大于等于-1,y大于等于0,绝对值符号可以展开
后面一项,x小于等于零,x的绝对值展开为负号
同时dy换成d(1+x)
∫ B C ‾ ∣ y ∣ d x + ∣ x ∣ d y = ∫ 0 − 1 ( 1 + x ) d x + ( − x ) d ( 1 + x ) \int_{\overline{BC}}|y|dx+|x|dy=\int_{0}^{-1}(1+x)dx+(-x)d(1+x) BCydx+xdy=01(1+x)dx+(x)d(1+x)

第三步,这里有点摸不着头脑
但是张宇说y=0,那么dy也是0
所以直接展开两项都是0

在这里插入图片描述
查到这个推导方式了

∫ C A ‾ ∣ y ∣ d x + ∣ x ∣ d y = ∫ − 1 1 0 d x + ∣ x ∣ 0 = 0 \int_{\overline{CA}}|y|dx+|x|dy=\int_{-1}^{1}0dx+|x|0=0 CAydx+xdy=110dx+x∣0=0
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

格林公式

闭合有向曲线的积分等于它围成的面的(另一个目标函数的)积分

左手边是正向,
如果是负向,在格林公式前面添负号
在这里插入图片描述
在这里插入图片描述
第二型曲线积分转化为二重积分
在这里插入图片描述
二重积分的被积函数是场论里平面的旋度
在这里插入图片描述
在这里插入图片描述
封闭曲线符号f圈
在这里插入图片描述
在这里插入图片描述
挖掉偏导数不存在的点,然后绕开这个点,一进一出抵消了,又形成了一个闭合曲线是一个极小的D,这个D和外面的方向相反

计算原来的D,再把这个极小的D减掉即可
在这里插入图片描述
在这里插入图片描述
椭圆方程(x/a)2+(y/b)2=1的面积是πab
在这里插入图片描述

满足格林公式可以推出的六个等价命题

在这里插入图片描述
在这里插入图片描述
就是A到B积分 + B到A积分 环路积分为0

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
二阶混合偏导数连续,可以交换偏导次序

二型曲线积分转化为一型曲线积分

在这里插入图片描述
如果转化之后容易做,就转化
在这里插入图片描述
在这里插入图片描述

斯托克斯公式

格林公式是斯托克斯公式在二维空间的一个特殊形式
他们都是计算闭合曲线的积分
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

旋度的意义

在这里插入图片描述
如果旋度为0,那么就是在无旋场中,可以换路径积分
在这里插入图片描述
在这里插入图片描述
平面旋度是Q对x偏导减去P对y偏导

第二型曲面积分

在这里插入图片描述
在这里插入图片描述
空间的流速场

在这里插入图片描述

为什么是dydz * i + dxdz * j + dxdy * k

还有,张宇说这里的dx dy dz其实都是有方向的
在这里插入图片描述

在这里插入图片描述
因为从通量的角度来看,洞越大,相同时间落进来的雨越多
x方向落雨,那么只考虑y方向和z方向的洞口大小

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
封闭曲面符号
在这里插入图片描述
在这里插入图片描述
投影出现直线允许
但是多值重合不允许
在这里插入图片描述

在这里插入图片描述

有着相同的面积

在这里插入图片描述

在这里插入图片描述

三计算的时候有些不同,如果曲面的指定外法线方向(此处曲面指双侧曲面)与z轴成锐角,dxdy取正;如果与z轴成钝角,dxdy取负

转换投影法

第二型曲面积分 或 斯托克斯公式 用到

有的题目是三个面上投影的积分
在这里插入图片描述
上题是往一个面上投影

在这里插入图片描述
把三个面上投影的题目,转成往一个面上投影

在这里插入图片描述
在这里插入图片描述
∂z/∂x = - F’x/F’z,这个是隐函数存在定理;

深层理解

dxdy是往xoy面上投影
想要改成向其他面投影,需要使用转换投影法
在这里插入图片描述

高斯公式

在这里插入图片描述
取内侧的话,符号变负
在这里插入图片描述
注意PQR与d的对应关系

在这里插入图片描述

在这里插入图片描述
被积函数是散度

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
挖去的曲面,向里的方向是朝外
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值