马尔科夫链与状态转移矩阵中的稳态概率算法

本文探讨了状态转移矩阵的概念及其在计算稳态概率中的应用。通过迭代计算,我们能够找到状态转移矩阵的稳态概率,即系统长期运行后的稳定状态。稳态概率的存在依赖于状态转移矩阵的特性,当矩阵减去单位矩阵后的秩小于矩阵维数时,稳态概率存在。
摘要由CSDN通过智能技术生成
	状态转移矩阵A=[[0.9,0.05,0.05],[0.1,0.8,0.1],[0.1,0.15,0.75]]
    阶段n步=状态转移矩阵A
    阶段n1步=np.dot(状态转移矩阵A,状态转移矩阵A)
    while not (阶段n步 == 阶段n1步).all():
        阶段n步 = 阶段n1步
        阶段n1步 = np.dot(阶段n1步,状态转移矩阵A)
    print(阶段n步)

当然了,并非所有状态转移矩阵都存在稳态概率
稳态概率时( π1π2π3……πn) = ( π1π2π3……πn)P,P为状态转移矩阵
如果P-E矩阵的秩小于n,则存在稳态概率
原理是:齐次线性方程组只有在秩小于n时,才存在非零解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值