状态转移矩阵A=[[0.9,0.05,0.05],[0.1,0.8,0.1],[0.1,0.15,0.75]]
阶段n步=状态转移矩阵A
阶段n1步=np.dot(状态转移矩阵A,状态转移矩阵A)
while not (阶段n步 == 阶段n1步).all():
阶段n步 = 阶段n1步
阶段n1步 = np.dot(阶段n1步,状态转移矩阵A)
print(阶段n步)
马尔科夫链与状态转移矩阵中的稳态概率算法
最新推荐文章于 2024-09-03 18:55:49 发布
本文探讨了状态转移矩阵的概念及其在计算稳态概率中的应用。通过迭代计算,我们能够找到状态转移矩阵的稳态概率,即系统长期运行后的稳定状态。稳态概率的存在依赖于状态转移矩阵的特性,当矩阵减去单位矩阵后的秩小于矩阵维数时,稳态概率存在。
摘要由CSDN通过智能技术生成