Ridge & LASSO & Elastic Net

总结来说,Ridge、LASSO、Elastic Net是线性回归的三种方法,添加了不同惩罚因子的损失函数J(θ)。


首先简单介绍线性回归的相关概念。


损失函数(目标函数):


为了防止过拟合(θ过大),在目标函数J(θ)后添加复杂度惩罚因子,也就是正则项。
正则项可以使用l1-norm、l2-norm,或结合l1-norm、l2-norm。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值