隐马尔可夫模型的解码

1.问题描述

  隐马尔可夫模型(HMM)的解码问题指,给定模型和输出序列,如何找出最有可能产生这个输出的状态序列。自然语言处理中,也即如何通过观测信号确定最有可能对应的实际语义。在状态序列上,每个状态位是状态集合中的元素之一,因此该问题等价于在状态集合中的节点构成的有向网络(篱笆网络)中找出一条概率最大的路径(最优路径),如图。该问题可以通过维特比算法得到高效的解决。
在这里插入图片描述

2.算法叙述

  假设 P ( s t , j ) P(s_{t,j}) P(st,j)表示从起始时刻到 s t , j s_{t,j} st,j的最优路径的概率, P r e ( s t , j ) Pre(s_{t,j}) Pre(st,j)表示从起始时刻到 s t , j s_{t,j} st,j的最优路径上前一个节点,则隐马尔可夫模型的维特比解码算法为:

输入:隐马尔可夫模型 λ = ( π , A , B ) \lambda=(\pi,A,B) λ=(π,A,B)和观测 O = ( o 1 , o 2 , . . . , o T ) O=(o_1,o_2,...,o_T) O=(o1,o2,...,oT)
输出:最优状态序列 S ∗ = ( s 1 ∗ , s 2 ∗ , . . . , s T ∗ ) S^{\ast}=(s_{1}^{\ast},s_{2}^{\ast},...,s_{T}^{\ast}) S=(s1,s2,...,sT).
(1)初始化
     P ( s 1 , j ) = π j b j ( o 1 ) P(s_{1,j})=\pi_{j}b_{j}(o_1) P(s1,j)=πjbj(o1)
     P r e ( s 1 , j ) = N o n e Pre(s_{1,j})=None Pre(s1,j)=None j = 1 , 2 , . . . , N j=1,2,...,N j=1,2,...,N

(2)递推
 对 t = 2 , 3 , . . . , T t=2,3,...,T t=2,3,...,T
P ( s t , j ) = max ⁡ 1 ≤ k ≤ N [ P ( s t − 1 , k ) a k j ] b j ( o t ) P(s_{t,j})=\max_{1\leq k \leq N}{\left[ P(s_{t-1,k})a_{kj} \right]b_{j}(o_t)} P(st,j)=1kNmax[P(st1,k)akj]bj(ot)
P r e ( s t , j ) = a r g max ⁡ 1 ≤ k ≤ N [ P ( s t − 1 , k ) a k j ] Pre(s_{t,j})=arg\max_{1\leq k \leq N}{\left[ P(s_{t-1,k})a_{kj} \right]} Pre(st,j)=arg1kNmax[P(st1,k)akj] j = 1 , 2 , . . . , N j=1,2,...,N j=1,2,...,N.

(3)递推终止
 最大概率 P ∗ = max ⁡ 1 ≤ j ≤ N P ( s T , j ) P^{\ast}=\max_{1\leq j \leq N}{P(s_{T,j})} P=1jNmaxP(sT,j)
 最优路径上的最后一个状态 s T ∗ = a r g max ⁡ 1 ≤ j ≤ N [ P ( s T , j ) ] s_{T}^{\ast}=arg\max_{1\leq j \leq N}{\left[ P(s_{T,j}) \right]} sT=arg1jNmax[P(sT,j)]

(4)回溯路径,确定最优状态序列
     S ∗ = ( s 1 ∗ , s 2 ∗ , . . . , s T − 1 ∗ , s T ∗ ) S^{\ast}=\left( s_{1}^{\ast},s_{2}^{\ast},...,s_{T-1}^{\ast},s_{T}^{\ast} \right) S=(s1,s2,...,sT1,sT)
      = ( P r e ( s 2 ∗ ) , P r e ( s 3 ∗ ) , . . . , P r e ( s T ∗ ) , s T ∗ ) =\left( Pre(s_{2}^{\ast}),Pre(s_{3}^{\ast}), ...,Pre(s_{T}^{\ast}),s_{T}^{\ast}\right) =(Pre(s2),Pre(s3),...,Pre(sT),sT)


3.示例

(参考自《统计学习方法》)
状态集合 Q = { q 1 , q 2 , q 3 } Q=\left\{ q_1, q_2, q_3 \right\} Q={q1,q2,q3},观测集合 V = { 0 , 1 } V=\left\{ 0,1 \right\} V={0,1},模型 λ = ( π , A , B ) \lambda=\left( \pi,A,B \right) λ=(π,A,B)

A = [ 0.5 0.2 0.3 0.3 0.5 0.2 0.2 0.3 0.5 ] A=\begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ \end{bmatrix} A=0.50.30.20.20.50.30.30.20.5 , B = [ 0.5 0.5 0.4 0.6 0.7 0.3 ] B=\begin{bmatrix} 0.5 & 0.5 \\ 0.4 & 0.6 \\ 0.7 & 0.3 \end{bmatrix} B=0.50.40.70.50.60.3, π = ( 0.2 , 0.4 , 0.4 ) T \pi=\left( 0.2, 0.4, 0.4 \right)^{T} π=(0.2,0.4,0.4)T

已知观测序列 O = ( 0 , 1 , 0 ) O=\left( 0, 1, 0 \right) O=(0,1,0),求最优状态序列。

解:
(1)在t=1时(初始化),对每一个状态,求观测为0的最大概率
P ( s 1 , 1 ) = 0.2 × 0.5 = 0.1 P(s_{1,1})=0.2\times0.5=0.1 P(s1,1)=0.2×0.5=0.1 P r e ( s 1 , 1 ) = N o n e Pre(s_{1,1})=None Pre(s1,1)=None
P ( s 1 , 2 ) = 0.4 × 0.4 = 0.16 P(s_{1,2})=0.4\times0.4=0.16 P(s1,2)=0.4×0.4=0.16 P r e ( s 1 , 2 ) = N o n e Pre(s_{1,2})=None Pre(s1,2)=None
P ( s 1 , 3 ) = 0.4 × 0.7 = 0.28 P(s_{1,3})=0.4\times0.7=0.28 P(s1,3)=0.4×0.7=0.28 P r e ( s 1 , 3 ) = N o n e Pre(s_{1,3})=None Pre(s1,3)=None

(2)在t=2时,对每一个状态,求观测为1的
 最大概率 P ( s 2 , j ) = max ⁡ 1 ≤ k ≤ 3 [ P ( s 1 , k ) a k j ] b j ( 1 ) P(s_{2,j})=\max_{1 \leq k \leq 3}{\left[ P(s_{1,k})a_{kj} \right]b_{j}(1)} P(s2,j)=1k3max[P(s1,k)akj]bj(1)
 当前最优的前一个状态 P r e ( s 2 , j ) = a r g max ⁡ 1 ≤ k ≤ 3 [ P ( s 1 , k ) a k j ] Pre(s_{2,j})=arg\max_{1 \leq k \leq 3}{\left[ P(s_{1,k})a_{kj} \right]} Pre(s2,j)=arg1k3max[P(s1,k)akj] j = 1 , 2 , 3. j=1,2,3. j=1,2,3.
P ( s 2 , 1 ) = m a x { 0.1 × 0.5 × 0.5 , 0.16 × 0.3 × 0.5 , 0.28 × 0.2 × 0.5 } P(s_{2,1})=max\left\{ 0.1\times0.5\times0.5, 0.16\times0.3\times0.5, 0.28\times0.2\times0.5 \right\} P(s2,1)=max{0.1×0.5×0.5,0.16×0.3×0.5,0.28×0.2×0.5} = 0.028 =0.028 =0.028

P r e ( s 2 , 1 ) = s 1 , 3 = q 3 Pre(s_{2,1})=s_{1,3}=q_3 Pre(s2,1)=s1,3=q3

P ( s 2 , 2 ) = m a x { 0.1 × 0.2 × 0.6 , 0.16 × 0.5 × 0.6 , 0.28 × 0.3 × 0.6 } P(s_{2,2})=max\left\{ 0.1\times0.2\times0.6,0.16\times0.5\times0.6,0.28\times0.3\times0.6 \right\} P(s2,2)=max{0.1×0.2×0.6,0.16×0.5×0.6,0.28×0.3×0.6} = 0.0504 =0.0504 =0.0504

P r e ( s 2 , 2 ) = s 1 , 3 = q 3 Pre(s_{2,2})=s_{1,3}=q_3 Pre(s2,2)=s1,3=q3

P ( s 2 , 3 ) = m a x { 0.1 × 0.3 × 0.3 , 0.16 × 0.2 × 0.3 , 0.28 × 0.5 × 0.3 } P(s_{2,3})=max\left\{ 0.1\times0.3\times0.3, 0.16\times0.2\times0.3,0.28\times0.5\times0.3 \right\} P(s2,3)=max{0.1×0.3×0.3,0.16×0.2×0.3,0.28×0.5×0.3} = 0.042 =0.042 =0.042

P r e ( s 2 , 3 ) = s 1 , 3 = q 3 Pre(s_{2,3})=s_{1,3}=q_3 Pre(s2,3)=s1,3=q3

(3)在t=3时,对每一个状态,求观测为0的
 最大概率 P ( s 3 , j ) = max ⁡ 1 ≤ k ≤ 3 [ P ( s 2 , k ) a k j ] b j ( 0 ) P(s_{3,j})=\max_{1 \leq k \leq 3}{\left[ P(s_{2,k})a_{kj} \right]b_{j}(0)} P(s3,j)=1k3max[P(s2,k)akj]bj(0)
 当前最优的前一个状态 P r e ( s 3 , j ) = a r g max ⁡ 1 ≤ k ≤ 3 [ P ( s 2 , k ) a k j ] Pre(s_{3,j})=arg\max_{1 \leq k \leq 3}\left[ P(s_{2,k})a_{kj} \right] Pre(s3,j)=arg1k3max[P(s2,k)akj] j = 1 , 2 , 3. j=1,2,3. j=1,2,3.

P ( s 3 , 1 ) = m a x { 0.028 × 0.5 × 0.5 , 0.0504 × 0.3 × 0.5 , 0.042 × 0.2 × 0.5 } P(s_{3,1})=max\left\{ 0.028\times0.5\times0.5, 0.0504\times0.3\times0.5,0.042\times0.2\times0.5 \right\} P(s3,1)=max{0.028×0.5×0.5,0.0504×0.3×0.5,0.042×0.2×0.5} = 0.00756 =0.00756 =0.00756

P r e ( s 3 , 1 ) = s 2 , 2 = q 2 Pre(s_{3,1})=s_{2,2}=q_2 Pre(s3,1)=s2,2=q2

P ( s 3 , 2 ) = m a x { 0.028 × 0.2 × 0.4 , 0.0504 × 0.5 × 0.4 , 0.042 × 0.3 × 0.4 } P(s_{3,2})=max\left\{ 0.028\times0.2\times0.4, 0.0504\times0.5\times0.4, 0.042\times0.3\times0.4 \right\} P(s3,2)=max{0.028×0.2×0.4,0.0504×0.5×0.4,0.042×0.3×0.4} = 0.01008 =0.01008 =0.01008

P r e ( s 3 , 2 ) = s 2 , 2 = q 2 Pre(s_{3,2})=s_{2,2}=q_2 Pre(s3,2)=s2,2=q2

P ( s 3 , 3 ) = m a x { 0.028 × 0.3 × 0.7 , 0.0504 × 0.2 × 0.7 , 0.042 × 0.5 × 0.7 } P(s_{3,3})=max\left\{ 0.028\times0.3\times0.7,0.0504\times0.2\times0.7,0.042\times0.5\times0.7 \right\} P(s3,3)=max{0.028×0.3×0.7,0.0504×0.2×0.7,0.042×0.5×0.7} = 0.0147 =0.0147 =0.0147

P r e ( s 3 , 3 ) = s 2 , 3 = q 3 Pre(s_{3,3})=s_{2,3}=q_3 Pre(s3,3)=s2,3=q3

(4)得到结果.
 最大概率
   P ∗ = max ⁡ 1 ≤ j ≤ 3 P ( s 3 , j ) P^{\ast}=\max_{1 \leq j \leq 3}P\left( s_{3,j} \right) P=max1j3P(s3,j)
    = m a x { 0.00756 , 0.01008 , 0.0147 } =max\left\{ 0.00756,0.01008,0.0147 \right\} =max{0.00756,0.01008,0.0147}
    = 0.0147 =0.0147 =0.0147
 最优状态序列
   S ∗ = ( P r e ( s 2 ∗ ) t , P r e ( s 3 ∗ ) , s 3 ∗ ) S^{\ast}=\left( Pre(s_{2}^{\ast})t,Pre(s_{3}^{\ast}),s_{3}^{\ast} \right) S=(Pre(s2)t,Pre(s3),s3)
    = ( s 1 , 3 , s 2 , 3 , s 3 , 3 ) =\left( s_{1,3},s_{2,3},s_{3,3} \right) =(s1,3,s2,3,s3,3)
    = ( q 3 , q 3 , q 3 ) =\left( q_3,q_3,q_3 \right) =(q3,q3,q3)


4.python实现

对上述HMM维特比解码示例的python实现程序为

import numpy as np

def viterbi(pi, A, B, Q, V, obs_seq):
    '''
    :param pi:HMM初始状态概率向量,list类型
    :param A:HMM状态转移概率矩阵,list类型
    :param B:HMM观测生成概率矩阵,list类型
    :param Q:状态集合,list类型
    :param V:观测集合,list类型
    :param obs_seq:观测序列,list类型
    :return:最优状态序列的概率sta_pro,float类型;最优状态序列sta_seq,list类型
    '''

    # HMM模型参数转换为array类型
    pi = np.array(pi)
    A = np.array(A)
    B = np.array(B)

    # 1.定义动态计算结果存储矩阵
    rowNum = len(Q)  # 行数,状态数
    colNum = len(obs_seq)  # 列数,生成的观测数,即时刻数

    # 存储节点当前最大概率的矩阵
    probaMatrix = np.zeros((rowNum,colNum))

    # 存储当前最优路径下的前一个节点的矩阵
    preNodeMatrix = np.zeros((rowNum,colNum))

    # 2.初始化(第1时刻)
    probaMatrix[:,0] = pi*np.transpose(B[:,obs_seq[0]])
    preNodeMatrix[:,0] = [-1]*rowNum  # 第1时刻节点的前一个节点不存在,置为-1

    # 3.递推,第2时刻至最后
    for t in range(1, colNum):
        list_pre_max_proba = []  # 节点最大前置概率列表
        list_pre_node = []  # 节点当前最优路径中前一个节点列表
        for j in range(rowNum):
            pre_proba_list = list(np.array(probaMatrix[:,t-1])*np.transpose(A[:,j]))  # 前置概率列表,前一时刻的节点最大概率与到当前节点转移概率的乘积
            '''
            注:因为计算机的二进制机制对小数的表达是有限的,所以对小数作运算将产生一定的误差。
            在使用函数获取pre_proba_list中的最大值和对应的索引时,为有效降低这种误差,将数据放大后再进行操作。
            '''
            pre_proba_list = [x*pow(10,5) for x in pre_proba_list]  # 放大100000倍
            prePro = max(pre_proba_list)/pow(10,5)  # 最大前置概率
            preNodeIndexNum = pre_proba_list.index(max(pre_proba_list))  # 前置节点的索引号
            list_pre_max_proba.append(prePro)  # 最大前置概率加入列表
            list_pre_node.append(preNodeIndexNum)  # 前置节点的索引号加入列表

        probaMatrix[:,t] = np.array(list_pre_max_proba)*np.transpose(B[:,obs_seq[t]])  # 最大前置概率乘上观测概率,即为当前最大概率
        preNodeMatrix[:,t] = list_pre_node  # 将该列前置节点索引号加入矩阵

    # 此时,得到了完整的probaMatrix和preNodeMatrix,对这两个矩阵进行操作便可得到需要的结果
    # 4.得到最大概率
    maxPro = np.max(probaMatrix[:, colNum-1])  # 全局最大概率(即最后一列的最大值)

    # 5.得到最优状态序列的状态索引号列表
    lastStateIndexNum = np.argmax(probaMatrix[:, colNum-1])  # 最优状态序列中最后一个状态的索引号
    stateIndexList = []  # 定义最优状态的索引号列表
    stateIndexList.append(lastStateIndexNum)

    # 回溯,完成状态索引号列表
    currentIndex = lastStateIndexNum;
    for t in range(colNum-1, 0, -1):
        fls = preNodeMatrix[:, t].tolist()  # 矩阵中的数值是浮点型
        ls = list(map(int, fls))  # 转为整型
        currentIndex = ls[currentIndex]
        stateIndexList.append(currentIndex)

    stateIndexList.reverse()  # 反转列表

    # 6.由索引号序列得到最优状态序列
    stateSeq = [Q[i] for i in stateIndexList]

    return maxPro,stateSeq

if __name__=='__main__':
    # 状态集合
    Q = ["q1", "q2", "q3"]

    # 观测集合
    V = [0, 1]

    # 初始状态概率向量
    pi = [0.2, 0.4, 0.4]

    # 状态转移概率矩阵
    A = [[0.5, 0.2, 0.3],
         [0.3, 0.5, 0.2],
         [0.2, 0.3, 0.5]]

    # 观测概率矩阵
    B = [[0.5, 0.5],
         [0.4, 0.6],
         [0.7, 0.3]]

    # 观测序列
    obs_seq = [0, 1, 0]

    maxPro, stateSeq = viterbi(pi, A, B, Q, V, obs_seq)

    print("最大概率为:", maxPro)
    print("最优状态序列为:", stateSeq)

在这里插入图片描述
End.


参考

  1. 吴军. 数学之美(第二版). 人民邮电出版社.
  2. 李航. 统计学习方法. 清华大学出版社.
  3. https://www.cnblogs.com/zhibei/p/9391014.html
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禺垣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值