Mean Teacher的调研与学习
0 FQA:
Q1,什么是Mean Teacher? MT的训练方式是怎样的?
A1: Mean Teacher是一种基于一致性正则化的半监督学习框架,从Π-model与时序集成演化而来。该模型由一个教师模型和一个学生模型组成,两者使用相同的网络结构。在训练过程中,该方法对学生和教师模型添加不同的扰动,并通过最小化二者的输出差异训练模型,使模型在不同扰动下的输出结果仍具有一致性,从而有效提升模型的泛化能力。
Q2:为什么叫平均教师?
A2: 因为在MT模型的训练过程中,Mean Teacher 首先对学生模型进行训练,并利用梯度下降法更新其模型参数,其次计算学生模型参数的指数移动平均值,并将计算结果更新为教师模型的参数。由于教师模型是连续若干训练step产生的学生模型的平均值,我们称之为平均教师方法。
Q3: MT与时序集成的不同点在哪?
A3: 与 Temporal Ensembling 方法的不同之处在于,Mean Teacher 并未对模型的输出结果进行操作,而是关注于对模型参数的处理。
Q4:后续的引用MT的文章中,都有那些创新思路? 比如说对着Mean Teacher结构上是如何创新点等等?
A4:感觉mean teacher 的变化形式特别的多,我先对着mean teacher为主题