【线性代数】第六章——二次型

本章体系

基础知识

1. 二次型

在这里插入图片描述

例题1:已知多项式,转换为二次型,需要修改矩阵为对称阵

在这里插入图片描述
在这里插入图片描述

2. 二次型的标准型:目标-不含交叉项

在这里插入图片描述

定理一:二次型的转化

在这里插入图片描述

例题1:先把一个变量相关的进行配方

在这里插入图片描述

例题2:二次型中不存在平方项,需要自己先设出来

在这里插入图片描述
在这里插入图片描述

3. 二次型的规范型——惯性指数

在这里插入图片描述
在这里插入图片描述

4. 在可逆矩阵定义下的 坐标变换

在这里插入图片描述

5. 矩阵合同:具有传递性

在这里插入图片描述
相似和合同都是可逆矩阵,合同对应的是可逆矩阵的转置,相似对应的是可逆矩阵本身。

定理一:合同变换转换二次型的矩阵

在这里插入图片描述

在这里插入图片描述

定理二:实对称矩阵的合同

在这里插入图片描述

例题1:实对称矩阵的合同、正交变换

相似矩阵有相同的特征值、有相同的迹
在这里插入图片描述

例题2:求正交变换即是求规范正交后的特征向量

在这里插入图片描述

6. 正定二次型、正定矩阵

在这里插入图片描述
在这里插入图片描述

定理一:坐标变换不影响惯性指数

在这里插入图片描述

定理二:实对称矩阵的二次型

在这里插入图片描述

定理三:正定二次型的充分必要条件

在这里插入图片描述

推论:正定的必要条件

在这里插入图片描述

例题1:定义法证明矩阵正定

在这里插入图片描述

例题2:正定——顺序主子式>0——矩阵可逆

在这里插入图片描述

7. 矩阵的几个关系:等价、相似、合同

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

例题1:如何证明合同?

在这里插入图片描述

例题2:证明不合同

在这里插入图片描述

例题3:综合判断三者

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值