本章体系
基础知识
1. 二次型
例题1:已知多项式,转换为二次型,需要修改矩阵为对称阵
2. 二次型的标准型:目标-不含交叉项
定理一:二次型的转化
例题1:先把一个变量相关的进行配方
例题2:二次型中不存在平方项,需要自己先设出来
3. 二次型的规范型——惯性指数
4. 在可逆矩阵定义下的 坐标变换
5. 矩阵合同:具有传递性
相似和合同都是可逆矩阵,合同对应的是可逆矩阵的转置,相似对应的是可逆矩阵本身。
定理一:合同变换转换二次型的矩阵
定理二:实对称矩阵的合同
例题1:实对称矩阵的合同、正交变换
相似矩阵有相同的特征值、有相同的迹
例题2:求正交变换即是求规范正交后的特征向量
6. 正定二次型、正定矩阵
定理一:坐标变换不影响惯性指数
定理二:实对称矩阵的二次型
定理三:正定二次型的充分必要条件
推论:正定的必要条件
例题1:定义法证明矩阵正定
例题2:正定——顺序主子式>0——矩阵可逆
7. 矩阵的几个关系:等价、相似、合同
例题1:如何证明合同?
例题2:证明不合同
例题3:综合判断三者