电磁场考前抱佛脚公式总结
基于清华-北交出版《电磁场与电磁波》
适用于考前突击 只总结了一些最基本的公式,非常非常基础,但看一遍有助于摸鱼党の期末考试
1. 公式罗列:
\def\oint{{\bigcirc}\kern-10pt{\int}}
\def\oiint{{\bigcirc}\kern-11.5pt{\int}\kern-6.5pt{\int}}
矢量分析的公式
后面要用到的在这里会强调,考试会给出的就不在这里赘述了
- grad div curl
标量场的梯度旋度计算: 最基本的
KaTeX parse error: Undefined control sequence: \part at position 30: …=\vec a_x\frac{\̲p̲a̲r̲t̲ ̲\varPhi}{\part …
矢量场的散度计算: 矢量场的散度是一个标量
KaTeX parse error: Undefined control sequence: \part at position 34: … \varPhi=\frac{\̲p̲a̲r̲t̲ ̲\vec \varPhi}{\…
矢量场的旋度计算: 矢量场的旋度是一个矢量
KaTeX parse error: Undefined control sequence: \part at position 107: … \\ \frac{\̲p̲a̲r̲t̲}{\part x} &\fr…
- 两个重要公式: 高斯定理和斯托克斯公式
∮ S A ⃗ d S = ∫ τ ∇ ⋅ A ⃗ d τ ∮ C A ⃗ ⋅ d l = ∫ S ( ∇ × A ⃗ ) d S \oint_S \vec A \mathrm{d}S=\int_\tau \nabla \cdot \vec A \mathrm d \tau\\ \oint_C \vec A \cdot \mathrm d l=\int_S(\nabla \times \vec A)\mathrm d S ∮SAdS=∫τ∇⋅Adτ∮CA⋅dl=∫S(∇×A)dS
静电场的公式
库仑定律:
第一个重要实验公式
F
⃗
12
=
q
1
q
2
(
r
2
−
r
1
)
4
π
ε
0
∣
r
2
−
r
1
∣
3
\vec F_{12}=\frac{q_1q_2(r_2-r_1)}{4\pi\varepsilon_0|r_2-r_1|^3}
F12=4πε0∣r2−r1∣3q1q2(r2−r1)
电场强度:三类电荷
E
⃗
(
r
⃗
)
=
∭
V
ρ
(
r
⃗
′
)
r
⃗
4
π
ϵ
0
∣
r
⃗
∣
3
d
V
E
⃗
(
r
⃗
)
=
∬
S
ρ
(
r
⃗
′
)
r
⃗
4
π
ϵ
0
∣
r
⃗
∣
3
d
S
E
⃗
(
r
⃗
)
=
∫
l
ρ
(
r
⃗
′
)
r
⃗
4
π
ϵ
0
∣
r
⃗
∣
3
d
l
\vec{E}(\vec{r})=\iiint_V \rho(\vec{r}') \frac{\vec{r}}{4\pi\epsilon_0|\vec{r}|^3}\mathrm{d}V\\ \vec{E}(\vec{r})=\iint_S \rho(\vec{r}') \frac{\vec{r}}{4\pi\epsilon_0|\vec{r}|^3}\mathrm{d}S\\ \vec{E}(\vec{r})=\int_l \rho(\vec{r}') \frac{\vec{r}}{4\pi\epsilon_0|\vec{r}|^3}\mathrm{d}l
E(r)=∭Vρ(r′)4πϵ0∣r∣3rdVE(r)=∬Sρ(r′)4πϵ0∣r∣3rdSE(r)=∫lρ(r′)4πϵ0∣r∣3rdl
静电场基本方程:静电场是一个有散无旋场
KaTeX parse error: Undefined control sequence: \cases at position 2: \̲c̲a̲s̲e̲s̲{\int\vec{E}\cd…
高斯公式:但是电场中任意高斯面上各点的电场强度是由所有电荷决定的
其中本构关系:
D
⃗
=
ε
0
E
⃗
+
χ
e
ε
0
E
⃗
=
(
χ
e
+
1
)
ε
0
E
⃗
=
ε
E
⃗
\begin{aligned} \vec{D} &= \varepsilon_0\vec{E} + \chi_e\varepsilon_0\vec{E}\\ &= (\chi_e + 1)\varepsilon_0\vec{E}\\ &= \varepsilon\vec{E} \end{aligned}
D=ε0E+χeε0E=(χe+1)ε0E=εE
束缚电荷:
ρ
v
b
=
−
∇
⋅
P
⃗
ρ
s
b
=
P
⃗
⋅
a
⃗
n
\rho_{vb} = - \nabla \cdot \vec{P}\\ \rho_{sb} = \vec{P}\cdot\vec{a}_n
ρvb=−∇⋅Pρsb=P⋅an
Q
p
+
Q
p
s
=
0
T
o
t
a
l
Q
i
s
0
Q_p+Q_{ps}=0\qquad \mathrm{Total \ Q \ is \ 0}
Qp+Qps=0Total Q is 0
P叫做极化强度aka单位体积中的总电偶极矩,有:
D
⃗
=
ε
0
E
⃗
+
P
⃗
\vec D =\varepsilon_0 \vec E+\vec P
D=ε0E+P
(极化强度的单位:
C
/
m
2
{C/m^2}
C/m2)
边界条件:
- 两个电介质之间:
We assume there exists a free surface charge density ρ s \rho_s ρs at the interface
we get:
n
⃗
⋅
(
D
⃗
1
−
D
⃗
2
)
∣
s
=
ρ
s
n
⃗
×
(
E
⃗
1
−
E
⃗
2
)
∣
s
=
0
\vec n \cdot (\vec D_1-\vec D_2)|_s=\rho_s \\ \vec n \times (\vec E_1-\vec E_2)|_s=0
n⋅(D1−D2)∣s=ρsn×(E1−E2)∣s=0
D 的法向分量差了个
ρ
s
\rho_s
ρs,E的切向分量相等
对于理想介质分界面, ρ s \rho_s ρs为0

- 导体和电介质之间:
导体内部是没有电场的,所以D1的法向分量就是
ρ
s
\rho_s
ρs,不用再和D2做差;E的话因为连续,所以是0
D
1
n
=
ρ
s
E
1
t
=
E
2
t
=
0
D_{1n}=\rho_s\\ E_{1t}=E_{2t}=0
D1n=ρsE1t=E2t=0
边界条件例题: Midterm 7 8:
- A very long conducting line with line charge density ρ t \rho_t ρt is vertically inserted into an infinite dielectric sheet with permittivity ε \varepsilon ε, as shown in Figure. Along a line which is parallel with the charged line, the electric field intensity outside the dielectric sheet, i.e. E 0 {E_0} E0, and the electric field intensity inside the dielectric sheet, i.e. E E E , satisfy:
![]()
- [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ccxTbj6G-1617871453640)(电磁场公式大全.assets/4a7cbc95f3851370d199f3165aa3550.png)]
解决: 考虑到是Sheet,足够薄,导致说不能在里面用高斯公式,只能通过边界条件得出,根据E的边界条件,我们知道这玩意切向连续,而"薄片"也没有法向,所以就相等,选C
那如果足够厚呢?
就可以用高斯公式,边界条件只是边界附近所满足的条件
再来看一道:
Two dielectric slabs are placed parallel between the plates of a parallel-plate capacitor, as shown in Figure. If the voltage applied on the capacitor is U, and ε 1 > ε 2 \varepsilon_1>\varepsilon_2 ε1>ε2 then
![]()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OLB5jQJA-1617871453642)(电磁场公式大全.assets/5d6091b58d4906d0d704dc111da5a97.png)]
解决: 上面说,边界条件只有边界才能满足,那么为啥这道题里面,把D1=D2的边界条件带到了整个电介质中呢? 因为,根据拉普拉斯方程, E只有一个
- 总结起来:遇到边界就去想边界条件 E and D
电位
KaTeX parse error: Undefined control sequence: \S at position 150: …epsilon_0}\int_\̲S̲ ̲\frac{\rho_s(r'…
如果取
泊松方程/拉普拉斯方程:
∇
2
Φ
=
−
ρ
f
ε
∇
2
Φ
=
0
\nabla^2\Phi=-\frac{\rho_f}{\varepsilon}\\ \nabla^2\Phi=0
∇2Φ=−ερf∇2Φ=0
平面镜像法:
把导体表面用镜像电荷等效
在引入大地的时候,记得想一下
电容计算:
C
=
Q
U
C=\frac{Q}{U}
C=UQ
电容储存的能量:
W
=
1
2
C
U
2
W=\frac 1 2 C U^2
W=21CU2
静电能与能量密度:
W = 1 2 ∫ τ E ⃗ ⋅ D ⃗ d τ w = 1 2 E ⃗ ⋅ D ⃗ = 1 2 ε E 2 = D 2 2 ε W=\frac{1}{2}\int_\tau\vec E \cdot \vec D \mathrm{d}\tau\\ w=\frac{1}{2}\vec E \cdot \vec D=\frac 1 2\varepsilon E^2=\frac{D^2}{2\varepsilon} W=21∫τE⋅Ddτw=21E⋅D=21εE2=2εD2
静电力一般能用静电能的梯度表示:
F
=
−
∇
W
F=-\nabla W
F=−∇W
恒定电场的公式:
电流:
I
=
d
q
d
t
I =\frac{\mathrm{d}q}{\mathrm{d}t}
I=dtdq
体电流和面电流:
KaTeX parse error: Got function '\vec' with no arguments as subscript at position 84: … I_v &= \iint_\̲v̲e̲c̲{S} \vec{J} \cd…
上面的时体电流密度,下面的时面电流密度,两个J不一样
电流密度与电荷密度:
J
⃗
=
ρ
v
J
⃗
s
=
ρ
s
v
I
⃗
=
ρ
l
v
\vec J=\rho v\\ \vec J_s=\rho_s v\\ \vec I=\rho_lv
J=ρvJs=ρsvI=ρlv
电流密度与电场强度:
J
⃗
=
σ
E
⃗
\vec J=\sigma \vec E
J=σE
电流密度与功率密度:
p
=
J
⃗
⋅
E
⃗
p=\vec J\cdot\vec E
p=J⋅E
恒定电场基本方程:(积分形式,微分形式)
∮
J
⃗
⋅
d
S
=
0
∫
c
E
⃗
⋅
d
S
=
0
∇
⋅
J
⃗
=
0
∇
×
E
⃗
=
0
\oint\vec J \cdot dS=0\\ \int_c\vec E \cdot dS=0\\ \nabla \cdot \vec J=0\\ \nabla \times \vec E=0
∮J⋅dS=0∫cE⋅dS=0∇⋅J=0∇×E=0
本构关系:
J
⃗
=
σ
E
⃗
\vec J=\sigma \vec E
J=σE
电位方程:
∇
2
Φ
=
0
\nabla^2\Phi=0
∇2Φ=0
恒定电场的边界条件:
J在垂直方向连续,E在切向连续
J
1
n
=
J
2
n
E
1
t
=
E
2
t
J_{1n}=J_{2n}\qquad E_{1t}=E_{2t}
J1n=J2nE1t=E2t
用电势描述:
KaTeX parse error: Undefined control sequence: \part at position 16: \sigma_1\frac{\̲p̲a̲r̲t̲ ̲\phi_1}{\part n…
恒定磁场的公式
安培力定律:
真空中载有电流的回路上的任一线元对另一载有电流的回路上的另一线元的作用力:
KaTeX parse error: Got function '\vec' with no arguments as subscript at position 23: …_{21}} = \oint_\̲v̲e̲c̲{l_2}\oint_\vec…
毕奥-萨伐尔定律:
真空中,电流元在任意一点出激发的磁场:(三种形式)
KaTeX parse error: Got function '\vec' with no arguments as subscript at position 37: …0}{4\pi} \oint_\̲v̲e̲c̲{l_1}\frac{I_1\…
洛伦兹力:
F
⃗
=
q
v
×
B
⃗
\vec F=qv \times \vec B
F=qv×B
电流源
B
⃗
\vec{B}
B 在外加磁场中所受的力
恒定磁场基本方程:
磁通连续性方程(无散)安培环路定理(有旋)
{
∫
C
H
⃗
⋅
d
l
=
I
∫
S
B
⃗
⋅
d
S
=
0
\begin{cases} \int_C \vec H \cdot \mathrm{d}l= I\\ \\ \int_S \vec B \cdot \mathrm{d}S=0 \end{cases}
⎩⎪⎨⎪⎧∫CH⋅dl=I∫SB⋅dS=0
{
∇
×
H
⃗
=
J
⃗
∇
⋅
B
⃗
=
0
⃗
\begin{cases} \nabla \times \vec{H} = \vec{J}\\ \\ \nabla \cdot \vec{B} = \vec{0} \end{cases}
⎩⎪⎨⎪⎧∇×H=J∇⋅B=0
结合上一章,I是什么,I时电流密度的积分
所以安培环路定律的微分形式:
∫
C
H
⃗
d
l
=
∫
S
J
⃗
S
d
S
\int_C\vec H \mathrm d l=\int_S\vec J_S\mathrm d S
∫CHdl=∫SJSdS
磁感应强度沿任意回路的环量等于真空磁导率乘以回路相交链的电流的代数和
在计算电流产生的磁场的磁感应强度时,只有环路上的磁场,才能用安培定律,否则用比奥萨法尔
但我们为磁场可以构建出自己喜欢的环路
例如:
- 无限大平面上均匀分布面电流 J s J_s Js,求此平面两侧磁感应强度
解:我们直接围绕这个平面两侧构建一个闭合的回路,沿着回路队磁场B积分:
2 l ⋅ ∣ H ⃗ ∣ = J S ⋅ l 2l\cdot |\vec H|=J_S\cdot l 2l⋅∣H∣=JS⋅l
EOD
本构关系:
B
=
μ
H
B=\mu H
B=μH
矢量磁位:
B
⃗
=
∇
×
A
⃗
\vec B=\nabla \times \vec A
B=∇×A
A
⃗
\vec A
A叫做矢量磁位,单位是特斯拉/韦伯每米
磁场的泊松方程和拉普拉斯方程:
∇
2
A
⃗
=
−
μ
0
J
⃗
∇
2
A
⃗
=
0
\nabla ^2 \vec A=-\mu_0 \vec J\\ \nabla ^2 \vec A=0
∇2A=−μ0J∇2A=0
用电流分布求矢量磁位:
KaTeX parse error: Undefined control sequence: \S at position 144: …}}{R}\mathrm d \̲S̲\\ \vec A(r)=\f…
磁化电流密度:磁化体电流密度、磁化面电流密度:
J
⃗
m
=
∇
′
×
M
(
r
)
J
⃗
m
S
=
M
(
r
)
×
n
∣
s
\vec J_m=\nabla'\times M(r)\\ \vec J_{mS}=M(r)\times n|_s
Jm=∇′×M(r)JmS=M(r)×n∣s
磁化强度的单位:安培/米(分子磁矩的矢量和)
边界条件:
B在法向连续,H在切向差个
J
S
J_S
JS
n
⃗
×
(
H
⃗
1
−
H
⃗
2
)
=
J
⃗
S
n
⃗
⋅
(
B
⃗
1
−
B
⃗
2
)
=
0
\vec n \times(\vec H_1-\vec H_2)=\vec J_S\\ \vec n \cdot (\vec B_1-\vec B_2)=0
n×(H1−H2)=JSn⋅(B1−B2)=0
互感:
磁通量
Φ
⃗
=
∫
S
B
⃗
d
S
\vec \Phi=\int_S\vec B \mathrm{d}S
Φ=∫SBdS
互感系数:
M
12
=
M
21
=
Ψ
12
I
1
=
Ψ
21
I
2
=
μ
0
4
π
∮
C
2
∮
C
1
d
l
1
d
l
2
R
M_{12}=M_{21}=\frac{\Psi_{12}}{I_1}=\frac{\Psi_{21}}{I_2}=\frac{\mu_0}{4\pi}\oint_{C_2}\oint_{C_1}\frac{dl_1dl_2}{R}
M12=M21=I1Ψ12=I2Ψ21=4πμ0∮C2∮C1Rdl1dl2
磁场能量:
W
m
=
1
2
∫
τ
H
⃗
⋅
B
⃗
d
τ
W_m=\frac{1}{2}\int_\tau \vec H \cdot \vec B \mathrm d\tau
Wm=21∫τH⋅Bdτ
能量密度:
w
m
=
1
2
B
⃗
⋅
H
⃗
w_m=\frac 1 2 \vec B \cdot \vec H
wm=21B⋅H
时变电磁场的公式
法拉第电磁感应定律:磁生电
获得感应电动势的方法;感应电动势的方向总是阻碍原磁场变化
e
=
−
∂
Φ
∂
t
e=-\frac{\partial{\Phi}}{\partial{t}}
e=−∂t∂Φ
∮ c E ⃗ ⋅ d l ⃗ = − ∫ s ∂ B ⃗ ∂ t ⋅ d S ⃗ − ∫ s B ⃗ ⋅ ∂ ∂ t ( d S ⃗ ) \oint_c\vec{E}\cdot d\vec{l}=-\int_s \frac{\partial{\vec{B}}}{\partial{t}}\cdot d\vec{S}\;-\int_s\vec{B}\cdot\frac{\partial}{\partial{t}}(d\vec{S}) ∮cE⋅dl=−∫s∂t∂B⋅dS−∫sB⋅∂t∂(dS)
感应电动势分为动生和感生
磁通改变产生感应电动势
全电流定律:(时变场的安培定律)电生磁
∮
c
H
⃗
⋅
d
l
⃗
=
∫
s
(
J
⃗
+
∂
D
⃗
∂
t
)
⋅
d
S
⃗
\oint_c\vec{H}\cdot d\vec{l}=\int_s(\vec{J}+\frac{\partial{\vec{D}}}{\partial{t}})\cdot d\vec{S}
∮cH⋅dl=∫s(J+∂t∂D)⋅dS
比恒定磁场的安培定律多了一项
∂
D
⃗
∂
t
\frac{\partial{\vec{D}}}{\partial t}
∂t∂D, 叫做位移电流密度
J
D
⃗
\vec{J_D}
JD
位移电流和传导电流:
麦克斯韦方程组:
- 全电流定律、法拉第电磁感应定律(只考虑感生)、磁通连续性方程、电场的高斯定律
∮ c H ⃗ ⋅ d l ⃗ = ∫ s ( J ⃗ + ∂ D ⃗ ∂ t ) ⋅ d S ⃗ ∮ c E ⃗ ⋅ d l ⃗ = − ∫ s ∂ B ⃗ ∂ t ⋅ d S ⃗ ∮ C B ⃗ ⋅ d S ⃗ = 0 ∮ S D ⃗ ⋅ d S ⃗ = Q = ∮ τ ρ d τ \oint_c\vec{H}\cdot d\vec{l}=\int_s(\vec{J}+\frac{\partial{\vec{D}}}{\partial{t}})\cdot d\vec{S} \\ \oint_c\vec{E}\cdot d\vec{l}=-\int_s \frac{\partial{\vec{B}}}{\partial{t}}\cdot d\vec{S}\\ \oint_C\vec{B}\cdot d\vec{S}=0 \\\oint_S\vec{D}\cdot d\vec{S}=Q=\oint_\tau \rho d \tau ∮cH⋅dl=∫s(J+∂t∂D)⋅dS∮cE⋅dl=−∫s∂t∂B⋅dS∮CB⋅dS=0∮SD⋅dS=Q=∮τρdτ
- 四个积分形式对应了四个微分形式:
∇ × H ⃗ = J ⃗ + ∂ D ⃗ ∂ t ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ × B ⃗ = 0 ∇ ⋅ D ⃗ = ρ \nabla\times\vec{H}=\vec{J}+\frac{\partial{\vec{D}}}{\partial t}\\ \nabla\times \vec{E}=-\frac{\partial{\vec{B}}}{\partial{t}}\\ \nabla\times \vec B=0\\ \nabla\cdot \vec D=\rho ∇×H=J+∂t∂D∇×E=−∂t∂B∇×B=0∇⋅D=ρ
- 本构关系:
D ⃗ = ε 0 E ⃗ B ⃗ = μ 0 H ⃗ J c ⃗ = σ E ⃗ \vec D=\varepsilon_0\vec E\qquad \vec B=\mu_0\vec H \qquad\vec{J_c}=\sigma\vec E D=ε0EB=μ0HJc=σE
-
在无源区:
∇ × H ⃗ = ε ∂ E ⃗ ∂ t ∇ × E ⃗ = − μ ∂ H ⃗ ∂ t \nabla\times\vec H=\varepsilon \frac{\partial{\vec E}}{\partial{t}}\\ \nabla\times\vec E=-\mu\frac{\partial{\vec H}}{\partial{t}} ∇×H=ε∂t∂E∇×E=−μ∂t∂H
脱开激励源后,互为涡旋源 -
波动方程:
KaTeX parse error: Undefined control sequence: \part at position 37: …arepsilon\frac{\̲p̲a̲r̲t̲^2{\vec E}}{\pa…
时变场边界条件:(介质分界面)
n
⃗
×
(
H
⃗
1
−
H
⃗
2
)
=
J
⃗
S
n
⃗
×
(
E
⃗
1
−
E
⃗
2
)
=
0
n
⃗
⋅
(
B
⃗
1
−
B
⃗
2
)
=
0
n
⃗
⋅
(
D
⃗
1
−
D
⃗
2
)
=
ρ
s
\vec n\times(\vec H_1-\vec H_2)=\vec J_S\\ \vec n\times(\vec E_1-\vec E_2)=0\\ \vec n\cdot(\vec B_1-\vec B_2)=0\\ \vec n\cdot(\vec D_1-\vec D_2)=\rho_s
n×(H1−H2)=JSn×(E1−E2)=0n⋅(B1−B2)=0n⋅(D1−D2)=ρs
其中n的方向是介质2
→
\to
→介质1;把介质2看作理想导体,则有:
n
⃗
×
H
⃗
=
J
⃗
S
n
⃗
×
E
⃗
=
0
n
⃗
⋅
B
⃗
=
0
n
⃗
⋅
D
⃗
=
ρ
s
\vec n\times\vec H=\vec J_S\\ \vec n\times\vec E=0\\ \vec n\cdot\vec B=0\\ \vec n\cdot\vec D=\rho_s
n×H=JSn×E=0n⋅B=0n⋅D=ρs
正弦电磁场复数表示法:
复振幅:
E
˙
x
m
=
E
x
m
(
r
)
e
j
Φ
x
(
r
)
\dot{E}_{xm}=E_{xm}(r)e^{j\Phi _x(r)}
E˙xm=Exm(r)ejΦx(r)
复矢量:组合了三个场分量的振幅和初相:
E
˙
m
(
r
)
=
a
⃗
x
E
˙
x
m
(
r
)
+
a
⃗
y
E
˙
y
m
(
r
)
+
a
⃗
z
E
˙
z
m
(
r
)
E
(
r
,
t
)
=
R
e
[
E
˙
m
(
r
)
e
j
ω
t
]
\begin{aligned} \dot{E}_m(r)&=\vec a_x\dot{E}_{xm}(r)+\vec a_y\dot{E}_{ym}(r)+\vec a_z\dot{E}_{zm}(r)\\ \end{aligned} \\E(r,t)=Re[\dot E_m(r)\;e^{j\omega t}]
E˙m(r)=axE˙xm(r)+ayE˙ym(r)+azE˙zm(r)E(r,t)=Re[E˙m(r)ejωt]
复麦克斯韦方程组:
∇
×
H
⃗
˙
=
J
⃗
˙
+
j
ω
D
⃗
˙
∇
×
E
⃗
˙
=
−
j
ω
B
⃗
˙
∇
⋅
B
⃗
˙
=
0
∇
⋅
D
⃗
˙
=
ρ
˙
\nabla \times \dot{\vec{H}} = \dot{\vec{J}} + j\omega\dot{\vec{D}}\\ \nabla \times \dot{\vec{E}} = -j\omega\dot{\vec{B}}\\ \nabla\cdot\dot{\vec{B}} = 0\\ \nabla \cdot \dot{\vec{D}} = \dot{\rho}
∇×H˙=J˙+jωD˙∇×E˙=−jωB˙∇⋅B˙=0∇⋅D˙=ρ˙
复波动方程:
∇
2
E
˙
m
+
ω
2
μ
ε
E
˙
m
=
0
∇
2
H
˙
m
+
ω
2
μ
ε
H
˙
m
=
0
\nabla^2\dot E_m+\omega ^2\mu\varepsilon\dot E_m=0\\ \nabla^2\dot H_m+\omega ^2\mu\varepsilon\dot H_m=0
∇2E˙m+ω2μεE˙m=0∇2H˙m+ω2μεH˙m=0
海姆霍兹方程:将
ω
2
μ
ε
\omega^2 \mu \varepsilon
ω2με替换成
k
2
k^2
k2;
坡印廷矢量:
S
⃗
(
t
)
=
E
⃗
(
t
)
×
H
⃗
(
t
)
S
⃗
a
v
e
=
R
e
[
1
2
E
˙
m
×
H
˙
m
∗
]
\vec S(t)=\vec E(t)\times\vec H(t)\\ \vec S_{ave}=Re[\frac{1}{2}\dot E_m\times \dot H_m^*]
S(t)=E(t)×H(t)Save=Re[21E˙m×H˙m∗]
坡印廷定理:
−
∮
S
E
⃗
×
H
⃗
⋅
d
S
=
∫
τ
∂
w
e
∂
t
d
τ
+
∫
τ
∂
w
m
∂
t
d
τ
+
∫
τ
σ
E
2
d
τ
-\oint_S\vec E\times\vec H\cdot dS=\int_\tau \frac{\partial w_e}{\partial t}d\tau+\int_\tau\frac{\partial w_m}{\partial t}d\tau+\int_\tau \sigma E^2d\tau
−∮SE×H⋅dS=∫τ∂t∂wedτ+∫τ∂t∂wmdτ+∫τσE2dτ
平面电磁波的公式
**本章对于电场的描述:(**solution of electric field in the time domain)
E
⃗
(
t
)
=
E
⃗
0
c
o
s
(
ω
t
−
(
k
x
x
−
K
y
y
+
k
z
z
)
)
=
E
⃗
0
c
o
s
(
ω
t
−
k
⃗
⋅
r
⃗
)
\vec E(t)= \vec E_0cos(\omega t-(k_xx-K_yy+k_zz))=\vec E_0cos(\omega t-\vec k\cdot \vec r)\\
E(t)=E0cos(ωt−(kxx−Kyy+kzz))=E0cos(ωt−k⋅r)
该时间函数对应的复矢量为:
E
˙
m
=
E
˙
0
e
−
j
k
⋅
r
\dot E_m=\dot E_0e^{-jk\cdot r}
E˙m=E˙0e−jk⋅r
其中k叫做波矢量(wave vector)大小和方向:
a
⃗
k
=
k
⃗
k
∣
k
∣
=
ω
μ
ε
\vec a_k=\frac{\vec k}{k}\\ |k|=\omega \sqrt{\mu \varepsilon}
ak=kk∣k∣=ωμε
其方向表示传播方向上单位距离滞后的相位,aka相移常数
均匀平面波传输特性:
f
=
1
T
=
ω
2
π
v
p
=
ω
k
=
1
μ
ε
f=\frac{1}{T}=\frac{\omega}{2\pi}\\ v_p=\frac{\omega}{k}=\frac{1}{\sqrt{\mu \varepsilon}}\\
f=T1=2πωvp=kω=με1
将电场的复矢量带入麦克斯韦方程:
得到:
H
˙
m
=
1
η
a
⃗
k
×
E
˙
m
E
˙
m
=
η
a
⃗
k
×
H
˙
m
\dot H_m=\frac{1}{\eta}\vec a_k\times \dot E_m\\ \dot E_m=\eta\vec a_k\times \dot H_m\\
H˙m=η1ak×E˙mE˙m=ηak×H˙m
其中,
η
\eta
η叫做本征阻抗,(intrinsic impedance)
η
=
μ
ε
\eta=\sqrt{\frac{\mu}{\varepsilon}}\\
η=εμ
本征阻抗同时是电场模值和磁场模值的比
我们也可以得到磁场的瞬时解:(The solution of magnetic field in the time domain)
H
⃗
(
t
)
=
1
η
a
⃗
k
×
E
⃗
0
c
o
s
[
ω
t
−
(
k
x
x
+
k
y
y
+
k
z
z
)
]
=
1
η
a
⃗
k
×
E
⃗
0
c
o
s
(
ω
0
t
−
k
⃗
⋅
r
⃗
)
\vec H(t)=\frac 1 \eta \vec a_k \times \vec E_0 cos[\omega t-(k_xx+k_yy+k_zz)]=\frac 1 \eta \vec a_k \times \vec E_0 cos(\omega_0 t-\vec k \cdot \vec r)
H(t)=η1ak×E0cos[ωt−(kxx+kyy+kzz)]=η1ak×E0cos(ω0t−k⋅r)
能流矢量的瞬时值:(instantaneous flow of power per unit area)
S
⃗
(
t
)
=
E
⃗
(
t
)
×
H
⃗
(
t
)
=
a
⃗
k
η
H
0
2
c
o
s
2
(
ω
t
−
k
⃗
⋅
r
⃗
)
\vec S(t)=\vec E(t) \times \vec H(t) =\vec a_k \eta H_0^2 cos^2(\omega t-\vec k \cdot \vec r)
S(t)=E(t)×H(t)=akηH02cos2(ωt−k⋅r)
平均值:
S
a
v
e
=
R
e
[
1
2
E
⃗
m
˙
×
H
⃗
m
∗
˙
]
=
a
⃗
k
1
2
η
∣
H
˙
m
∣
2
S_{ave}=Re[\frac 1 2 \dot{\vec E_m} \times \dot{\vec H_m^*}]=\vec a_k \frac 1 2 \eta |\dot H_m|^2
Save=Re[21Em˙×Hm∗˙]=ak21η∣H˙m∣2
电场磁场能量密度相等:
1
2
ε
∣
E
(
t
)
∣
2
=
w
e
(
t
)
=
w
m
(
t
)
=
1
2
μ
∣
H
(
t
)
∣
2
\frac 1 2 \varepsilon |E(t)|^2=w_e(t)=w_m(t)=\frac 1 2 \mu |H(t)|^2
21ε∣E(t)∣2=we(t)=wm(t)=21μ∣H(t)∣2
极化:
Linear polarization;电场方向是 a ⃗ E \vec a_E aE 大小varies sinusoidal with time
Circular polarization;振幅复矢量的实部虚部大小相等,相互垂直
Elliptical polarization;其他情况
E
˙
m
=
a
E
E
0
e
−
j
(
k
⃗
⋅
r
⃗
−
φ
)
E
˙
m
=
(
E
r
±
j
E
j
)
e
−
j
k
⋅
r
E
˙
r
⋅
E
˙
j
=
0
a
n
d
∣
E
r
∣
=
∣
E
j
∣
=
∣
E
m
∣
E
˙
r
⋅
E
˙
j
≠
0
o
r
∣
E
r
∣
≠
∣
E
j
∣
\dot E_m=a_EE_0e^{-j(\vec k \cdot \vec r-\varphi)}\\ \quad \\ \dot E_m=(E_r\pm jE_j)e^{-jk\cdot r}\\ \dot E_r \cdot \dot E_j=0 \qquad and \qquad| E_r|=| E_j|=| E_m|\\ \quad \\ \dot E_r \cdot \dot E_j\ne0 \qquad or\qquad | E_r|\ne| E_j|\\
E˙m=aEE0e−j(k⋅r−φ)E˙m=(Er±jEj)e−jk⋅rE˙r⋅E˙j=0and∣Er∣=∣Ej∣=∣Em∣E˙r⋅E˙j=0or∣Er∣=∣Ej∣
导电媒质中:有复传播常数k和复电容率
ε
\varepsilon
ε
ε
˙
=
ε
−
j
σ
ω
k
˙
=
ω
μ
(
ε
−
j
σ
ω
)
=
β
−
j
α
\dot \varepsilon = \varepsilon -j \frac \sigma \omega \\ \dot k = \omega \sqrt{\mu (\varepsilon -j \frac \sigma \omega)}=\beta-j \alpha\\
ε˙=ε−jωσk˙=ωμ(ε−jωσ)=β−jα
替换之,得到电场在介质中的解式:
E
˙
=
E
˙
0
e
−
j
k
⋅
r
=
E
˙
0
e
−
α
a
⃗
k
⋅
r
\dot E=\dot E_0 e^{-jk\cdot r}=\dot E_0 e^{-\alpha \vec a_k \cdot r}
E˙=E˙0e−jk⋅r=E˙0e−αak⋅r
其中
α
β
\alpha \quad \beta
αβ分别是衰减常数和相移常数 (attenuation constant、phase constant)
the larger attenuation constant is , the faster the electric field decays per unit length
the larger the phase constant is, the faster the phase shifts per unit length
良导体中:
α
≈
β
=
ω
μ
σ
2
=
π
f
μ
σ
\alpha \approx \beta=\sqrt{\frac{\omega \mu \sigma}{2}}=\sqrt{\pi f \mu \sigma}\\
α≈β=2ωμσ=πfμσ
此时有本征阻抗:
η
˙
c
=
μ
ε
c
=
μ
ε
−
j
σ
ω
\dot \eta_c=\sqrt{\frac \mu \varepsilon_c }=\sqrt{\frac{\mu}{\varepsilon-j\frac \sigma \omega}}
η˙c=εμc=ε−jωσμ
趋肤深度:(skin depth)场的幅值衰减到表面值得1/e时电磁波传输的距离
δ
=
1
α
=
1
π
f
μ
σ
\delta=\frac 1 \alpha =\frac 1 {\pi f \mu \sigma}
δ=α1=πfμσ1
均匀平面波垂直入射:
- 导电媒质分界面:Normal incidence between dielectric-dielectric interface:
I n c i d e n t w a v e : E ˙ + ( z ) = a ⃗ x E m + e − j β 1 z H ˙ + ( z ) = 1 η a ⃗ y E m + e − j β 1 z Incident wave: \\ \dot E^+(z)=\vec a_x E^+_me^{-j\beta_1z}\\ \dot H^+(z)=\frac 1 \eta\vec a_y E^+_me^{-j\beta_1z} Incidentwave:E˙+(z)=axEm+e−jβ1zH˙+(z)=η1ayEm+e−jβ1z
R e f l e c t e d w a v e : E ˙ − ( z ) = a ⃗ x R E m + e j β 1 z H ˙ − ( z ) = 1 η 1 a ⃗ y R E m + e j β 1 z Reflected wave:\\ \dot E^-(z)=\vec a_x R E^+_me^{j\beta_1z}\\ \dot H^-(z)=\frac 1 \eta_1 \vec a_y R E^+_me^{j\beta_1z} Reflectedwave:E˙−(z)=axREm+ejβ1zH˙−(z)=η11ayREm+ejβ1z
T r a n s m i t t e d w a v e : E ˙ t ( z ) = a ⃗ x T E m + e − j β 2 z E ˙ t ( z ) = 1 η 2 a ⃗ y T E m + e − j β 2 z Transmitted wave:\\ \dot E^t(z)=\vec a_x T E^+_m e^{-j\beta_2 z}\\ \dot E^t(z)=\frac 1 \eta_2 \vec a_y T E^+_m e^{-j\beta_2 z}\\ Transmittedwave:E˙t(z)=axTEm+e−jβ2zE˙t(z)=η12ayTEm+e−jβ2z
其中,透射系数和反射系数T,R为
R
˙
=
E
m
−
E
m
+
=
η
c
2
−
η
c
1
η
c
1
+
η
c
2
T
˙
=
E
m
T
E
m
+
=
2
η
c
2
η
c
1
+
η
c
2
\dot R=\frac{E^-_m}{E^+_m}=\frac{\eta _{c2}-\eta_{c1}}{\eta_{c1}+\eta_{c2}}\\ \dot T=\frac{E^T_m}{E^+_m}=\frac{2\eta _{c2}}{\eta_{c1}+\eta_{c2}}\\
R˙=Em+Em−=ηc1+ηc2ηc2−ηc1T˙=Em+EmT=ηc1+ηc22ηc2
- 对于理想导体和完纯介质表面:
R = − 1 T = 0 R ˙ = E m − E m + = η 2 − η 1 η 1 + η 2 T ˙ = E m T E m + = 2 η 2 η 1 + η 2 R=-1 \qquad T=0\\ \dot R=\frac{E^-_m}{E^+_m}=\frac{\eta _{2}-\eta_{1}}{\eta_{1}+\eta_{2}}\qquad \dot T=\frac{E^T_m}{E^+_m}=\frac{2\eta _{2}}{\eta_{1}+\eta_{2}}\\ R=−1T=0R˙=Em+Em−=η1+η2η2−η1T˙=Em+EmT=η1+η22η2
驻波比:
s
=
1
+
∣
R
∣
1
−
∣
R
∣
s=\frac{1+|R|}{1-|R|}\\
s=1−∣R∣1+∣R∣
对良导体表面:
R
˙
≈
−
1
T
˙
≈
2
η
c
η
\dot R \approx-1 \qquad \dot T \approx \frac {2 \eta_c}{\eta}
R˙≈−1T˙≈η2ηc
均匀平面波的斜入射 只考导体
电场磁场的对比体现了电和磁的完美对称
他们的基本公式衍生出了第五章的麦克斯韦方程组:
(高斯公式,电流连续性,全电流,电磁感应):
∮
c
H
⃗
⋅
d
l
⃗
=
∫
s
(
J
⃗
+
∂
D
⃗
∂
t
)
⋅
d
S
⃗
∮
c
E
⃗
⋅
d
l
⃗
=
−
∫
s
∂
B
⃗
∂
t
⋅
d
S
⃗
∮
s
B
⃗
⋅
d
S
⃗
=
0
∮
D
⃗
⋅
d
S
⃗
=
Q
=
∮
τ
ρ
d
τ
\oint_c\vec{H}\cdot d\vec{l}=\int_s(\vec{J}+\frac{\partial{\vec{D}}}{\partial{t}})\cdot d\vec{S} \\ \oint_c\vec{E}\cdot d\vec{l}=-\int_s \frac{\partial{\vec{B}}}{\partial{t}}\cdot d\vec{S}\\ \oint_s\vec{B}\cdot d\vec{S}=0 \\\oint\vec{D}\cdot d\vec{S}=Q=\oint_\tau \rho d \tau
∮cH⋅dl=∫s(J+∂t∂D)⋅dS∮cE⋅dl=−∫s∂t∂B⋅dS∮sB⋅dS=0∮D⋅dS=Q=∮τρdτ
电场有散度无旋度,磁场有旋度无散度;
g) |
| 拉普拉斯方程 |
∇
2
Φ
=
−
ρ
f
ε
∇
2
Φ
=
0
{\nabla^2\Phi=-\frac{\rho_f}{\varepsilon}\\\nabla^2\Phi=0}
∇2Φ=−ερf∇2Φ=0 |
∇
2
A
⃗
=
−
μ
0
J
⃗
∇
2
A
⃗
=
0
{\nabla ^2 \vec A=-\mu_0 \vec J\\\nabla ^2 \vec A=0}
∇2A=−μ0J∇2A=0 |
| 能量 |
W
=
1
2
∫
τ
E
⃗
⋅
D
⃗
d
τ
{W=\frac{1}{2}\int_\tau\vec E \cdot \vec D \mathrm{d}\tau\\}
W=21∫τE⋅Ddτ |
W
m
=
1
2
∫
τ
H
⃗
⋅
B
⃗
d
τ
{W_m=\frac{1}{2}\int_\tau \vec H \cdot \vec B \mathrm d\tau}
Wm=21∫τH⋅Bdτ |
电场磁场的对比体现了电和磁的完美对称
他们的基本公式衍生出了第五章的麦克斯韦方程组:
(高斯公式,电流连续性,全电流,电磁感应):
∮
c
H
⃗
⋅
d
l
⃗
=
∫
s
(
J
⃗
+
∂
D
⃗
∂
t
)
⋅
d
S
⃗
∮
c
E
⃗
⋅
d
l
⃗
=
−
∫
s
∂
B
⃗
∂
t
⋅
d
S
⃗
∮
s
B
⃗
⋅
d
S
⃗
=
0
∮
D
⃗
⋅
d
S
⃗
=
Q
=
∮
τ
ρ
d
τ
\oint_c\vec{H}\cdot d\vec{l}=\int_s(\vec{J}+\frac{\partial{\vec{D}}}{\partial{t}})\cdot d\vec{S} \\ \oint_c\vec{E}\cdot d\vec{l}=-\int_s \frac{\partial{\vec{B}}}{\partial{t}}\cdot d\vec{S}\\ \oint_s\vec{B}\cdot d\vec{S}=0 \\\oint\vec{D}\cdot d\vec{S}=Q=\oint_\tau \rho d \tau
∮cH⋅dl=∫s(J+∂t∂D)⋅dS∮cE⋅dl=−∫s∂t∂B⋅dS∮sB⋅dS=0∮D⋅dS=Q=∮τρdτ
电场有散度无旋度,磁场有旋度无散度;