驾驶员疲劳监测技术(Driver Fatigue Monitoring, DFM)是现代智能驾驶辅助系统的重要组成部分,目的是通过实时监测驾驶员的生理和行为特征,判断驾驶员是否存在疲劳驾驶,并采取有效的干预措施,确保行车安全。疲劳驾驶是交通事故的主要诱因之一,因此,疲劳监测技术成为了智能交通、自动驾驶和驾驶辅助系统(ADAS)中不可或缺的环节。
一、驾驶员疲劳监测技术原理
驾驶员疲劳监测技术的核心是通过多种传感器、计算机视觉、机器学习和人工智能等技术手段,实时分析驾驶员的状态。其原理包括但不限于以下几个方面:
-
面部特征分析:
- 面部特征分析技术使用摄像头捕捉驾驶员面部图像,通过图像处理技术识别面部特征,进而判断驾驶员的疲劳状态。常用的面部特征包括眼睛的开合度、眨眼频率、眼球运动、眼睛闭合持续时间、瞳孔大小等。
- 眨眼分析:频繁眨眼通常表示疲劳,而长时间的眼睑闭合可能表明驾驶员处于昏昏欲睡的状态。
- 眼睛追踪:眼睛的运动轨迹、视线集中度可以反映驾驶员的注意力和警觉性。
- 头部姿态:驾驶员如果频繁低头、摇头或不正常地移动头部,也可能表示疲劳。
-
生理信号监测:
- 心率:心率变异性分析(Heart Rate Variability, HRV)可以通过监测驾驶员的心跳频率变化来评估其疲劳程度。
- 皮肤电反应:通过电气传感器检测皮肤的电反应,判断驾驶员的压力状