ICP-MS和ICP-AES的区别与检出限

在做电感耦合等离子体(icp)测试时,科学指南针检测平台工作人员在与很多同学沟通中了解到,好多同学对icp测试不太了解,针对此,科学指南针检测平台团队组织相关同事对网上海量知识进行整理,希望可以帮助到科研圈的伙伴们;

 

ICP-MSICP-AES的区别

 

ICP-AES是否是明智之举,还是留在原来可信赖的AAS上。现在一个新技术ICP-MS已呈现在世上,虽然价格较高,但ICP-MS具有ICP-AES的优点及比石墨炉原子吸收(GFAAS)更低的检出限。

对于拥有ICP-AES技术背景的人来讲,ICP-MS是一个以质谱仪作为检测器的等离子体(ICP),而质谱学家则认为ICP-MS是一个以ICP为源的质谱仪。事实上,ICP-AES和ICP-MS的进样部分及等离子体是及其相似的。ICP-AES测量的是光学光谱(165-800nm),ICP-MS测量的是离子质谱,提供在3-250amu范围内每一个原子质量单位(amu)的信息,因此,ICP-MS除了元素含量测定外,还可测量同位素。

 

ICP-MSICP-AES的检出限

 

ICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为ppt级(必需记牢,实际的检出限不可能优于你实验室的清洁条件),石墨炉AAS的检出限为亚ppb级,ICP-AES大部份元素的检出限为1-10ppb,一些元素在洁净的试样中也可得到令人注目的亚ppb级的检出限。必须指出,ICP-MS的ppt级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS检出限的优点会变差多达50倍,一些普通的轻元素(如S、Ca、Fe 、K、Se)在ICP-MS中有严重的干扰,也将恶化其检出限。

以上就是科学指南针检测平台对网络上ICP相关资料的整理如有测试需求,可以和科学指南针联系,我们会给与您最准确的数据和最好的服务体验,希望可以在大家的科研路上有所帮助。

免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。

关于ICP测试,今天就分享到这里。如果内容对你有帮助,希望大家不要吝啬点个赞哦,我们会继续给大家输出更多优质内容~

最后,祝大家科研顺利!如果你想和更多科研工作者学习探讨,可以扫码关注下哦~

 

资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机平板电脑。开发者可以借助各种库框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估恢复。 使用 test_model.py 或 test.py 对模型进行验证测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值