Origin计算多条曲线的峰面积

文章介绍了如何利用Origin软件对紫外(UV)扫描的化合物曲线进行积分,以求得峰面积。步骤包括数据导入、图形绘制、积分设置及结果输出,特别强调了选择积分范围和计算面积的选项,适合科研工作者进行数据分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景介绍

前几天对一个自己造的化合物使用紫外(UV)进行全波长扫描,虽然波长是扫出来了,但是如何对每条曲线进行积分求峰的面积,以此进行下一步计算呢?

积分教程

下面是我们的一组数据,数据是从机器上直接导出来的csv格式,然后直接复制到Origin软件即可。

1.直接对数据作图,观察曲线和数据

2.菜单栏-分析-数学-积分-打开对话框

3.打开输入前面的+

4.点击小三角,添加后面两条线。

5.这时候,就有三个范围了:范围1,2,3

6.范围1中,x就代表x轴,y就代表B列数据。选择按X轴,选择范围,这里选择460-730的范围。

6.范围1中,x就代表x轴,y就代表B列数据。选择按X轴,选择范围,这里选择460-730的范围。

8.勾掉输出量,仅勾选面积选项,然后勾选积分结果

9.点击确定即可输出积分结果。结果在数据表的邻居——IntegResult1,此时可以看到三条曲线的峰面积了。

10.赶紧来学学吧!

文章来源于Paper绘图 ,作者超级super栋

更多科研干货教程,可以点击下面链接获取哦~

紫外可见

GPC(凝胶渗透色谱法)是一种分离技术,用于根据不同分子大小对混合物进行分离。当有多个存在,每个的特性如初始分子量(Mw起点)、平均分子量(Mn)、最大分子量(Mx)以及它们所占的区域百分比,可以通过以下几个步骤来拟合GPC曲线: 1. **数据准备**:收集所有的数据,包括分子量范围和相对频率。 2. **理论模型选择**:通常采用Lorentzian或是Voigt函数来描述形,因为实际形状可能是这两种模型的组合。值可以用方程式表示,比如对于单Lorentzian: \[ f(M) = \frac{A}{\pi} \cdot \frac{\Gamma}{(M - M_n)^2 + (\Gamma/4)^2} \] 其中 \( A \) 是面积,\( M_n \) 是平均分子量,\( \Gamma \) 是半高宽。 3. **拟合算法应用**: - 使用数值优化工具,比如Python的`scipy.optimize.curve_fit`函数,或者专用的数据处理软件(如Origin、Agilent ChemStation等)的非线性最小二乘法功能,输入位置、宽度、高度等信息,对每个进行独立拟合。 4. **多融合**:如果有多,需要合并它们,通常是在相邻之间寻找合适的连接点,并调整各的参数使其平滑过渡。 5. **结果验证**:检查拟合后的曲线是否合理,值位置和分布与原始数据是否匹配。 6. **生成报告**:最后,将拟合曲线及其参数整理成报告,以便后续分析和讨论。 ```python import numpy as np from scipy.optimize import curve_fit # 假设我们有如下数据 initial_mws = [5000, 7000, 10000] # 初始分子量 average_ms = [5500, 8000, 11000] # 平均分子量 max_ms = [6000, 9000, 12000] # 最大分子量 areas = [0.2, 0.4, 0.4] # 区域百分比 widths = [500, 800, 1200] # 半高宽 def lorentzian_function(x, Mn, Gamma): return areas[i] * (1 / np.pi) * (Gamma / ((x - Mn)**2 + (Gamma/4)**2)) # 对于每个,创建x值(假设是连续分子量轴),然后拟合函数 x_values = np.linspace(min(initial_mws), max(max_ms), num=1000) params_list = [(average_ms[i], widths[i]) for i in range(len(initial_mws))] fit_results = [] for i, params in enumerate(params_list): popt, _ = curve_fit(lorentzian_function, x_values, initial_mws, p0=params) fit_results.append(popt) # 合并并绘制拟合曲线 merged_curve = sum([lorentzian_function(x_values, *result) for result in fit_results]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值