正定(P. D.,positive definite)、负定(N. D.)、半正定(P. S. D.,positive semidefinite)、半负定(N. S. D.)统称定矩阵。
定矩阵有如下一些性质:
- a a a为 n × 1 n\times 1 n×1向量,则 A = a a ′ A=aa' A=aa′必为半正定矩阵;
- 若 A A A半正定(正定),则 A A A的所有特征值均不小于(大于) 0 0 0;
- 若 A A A为 n × n n\times n n
正定(P. D.,positive definite)、负定(N. D.)、半正定(P. S. D.,positive semidefinite)、半负定(N. S. D.)统称定矩阵。
定矩阵有如下一些性质: