定矩阵的性质

定矩阵包括正定、负定、半正定和半负定,它们在数学中具有重要性质。例如,A=aa'是半正定的;半正定矩阵的所有特征值都非负;实对称半正定矩阵可以表示为C'C的形式,其中C不唯一,可以通过正交阵X和非负对角阵Λ来表示。
摘要由CSDN通过智能技术生成

正定(P. D.,positive definite)、负定(N. D.)、半正定(P. S. D.,positive semidefinite)、半负定(N. S. D.)统称定矩阵。
定矩阵有如下一些性质:

  • a a a n × 1 n\times 1 n×1向量,则 A = a a ′ A=aa' A=aa必为半正定矩阵;
  • A A A半正定(正定),则 A A A的所有特征值均不小于(大于) 0 0 0
  • A A A n × n n\times n n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值