大模型论文 | 斯坦福发布超大规模100万亿Token的大模型训练数据集RedPajama-V2

1. RedPajama: an Open Dataset for Training Large Language Models

大语言模型日益成为人工智能、科学和社会中的基石技术,然而,在数据集组成和筛选方面的最优策略仍然难以捉摸。许多表现最佳的模型在其数据集策展和模型开发过程中缺乏透明度,这成为开发完全开源语言模型的障碍。在本文中,我们发现三项核心数据相关挑战,包括(1)模型开发中的透明度,包括数据策展过程,(2)获取大量高质量数据,以及(3)数据策展和分析所需的成品和元数据。为了解决这些挑战,我们发布了RedPajama-V1,这是对LLaMA训练数据集的开放复现。此外,我们发布了RedPajama-V2,这是一个仅限网络的大规模数据集,包含原始、未过滤的文本数据、质量信号和元数据。RedPajama数据集合计超过100万亿个令牌,覆盖多个领域,并通过其质量信号促进数据筛选,旨在激发开发众多新数据集。迄今为止,这些数据集已被用于训练如Snowflake Arctic、Salesforce的XGen和AI2的OLMo等用于生产的强大语言模型。为了提供RedPajama质量的见解,我们使用具有多达16亿参数的仅解码器语言模型进行了一系列分析和消融研究。我们的发现表明,如何有效利用网络数据的质量信号来策展数据集中的高质量子集,突显了RedPajama在推进透明和高性能语言模型开发方面的潜力。

论文: https://arxiv.org/pdf/2411.12372

2. Continuous Speculative Decoding for Autoregressive Image Generation

连续值自回归(Continuous-valued AR)图像生成模型在重建质量和生成保真度方面已经展现出显著的优势,超过了其离散标记的同类模型。然而,自回归框架的计算需求导致了显著的推理开销。虽然推测解码已被证明能有效加速大型语言模型(LLMs),但将其适应连续值视觉自回归模型的研究尚未展开。本文将推测解码算法从离散标记推广到连续空间。通过分析输出分布的内在特性,我们为这些模型中普遍存在的扩散分布建立了定制化的接受标准。为了解决推测解码输出分布中的不一致性,我们提出了去噪轨迹对齐和标记预填充方法。此外,我们还识别了拒绝阶段难以采样的分布。为了解决这一问题,我们提出了一种精细的接受-拒绝采样方法,并设定了适当的上限,从而避免了复杂的积分。实验结果表明,我们的连续值推测解码在保持输出分布的同时,实现了显著的2.33倍加速。代码将在https://github.com/MarkXCloud/CSpD 供开源。

论文: https://arxiv.org/pdf/2411.11925

3. ITACLIP: Boosting Training-Free Semantic Segmentation with Image, Text, and Architectural Enhancements

最近基础视觉语言模型(VLMs)的进步已经重塑了计算机视觉任务的评估标准。这些基础模型,尤其是CLIP,加速了开放词汇计算机视觉任务的研究进展,包括开放词汇语义分割(OVSS)等。尽管初步结果令人鼓舞,但视觉语言模型的密集预测能力仍需进一步提升。在本文中,我们通过提出新的模块和进行修改来提升CLIP的语义分割性能:1)在ViT的最后一层进行架构调整,并将中间层的注意力图与最后一层结合使用,2)图像工程:应用数据增强以丰富输入图像的表示,3)使用大型语言模型(LLMs)为每个类名生成定义和近义词,以利用CLIP的开放词汇能力。我们的无训练方法ITACLIP在语义分割基准测试(如COCO-Stuff、COCO-Object、Pascal Context和Pascal VOC)上的表现优于当前最先进的方法。我们的代码可在https://github.com/m-arda-aydn/ITACLIP获取。

论文: https://arxiv.org/pdf/2411.12044

4. SEAGULL: No-reference Image Quality Assessment for Regions of Interest via Vision-Language Instruction Tuning

现有的图像质量评估(IQA)方法在分析整体图像的质量方面取得了显著的成功,但很少有工作探索对感兴趣区域(ROIs)的质量分析。ROIs的质量分析可以提供精细粒度的指导,对于关注区域级质量的场景至关重要。本文提出了一种名为SEAGULL的新网络,它可以借助大型视觉-语言模型的指导来评估ROIs的质量。SEAGULL结合了视觉-语言模型(VLM)、由分割一切模型(SAM)生成的掩码来指定ROIs,并且包含一个精心设计的基于掩码的特征提取器(MFE)来提取指定ROIs的全局和局部特征,从而实现准确的细粒度IQA。此外,本文构建了两个基于ROIs的IQA数据集SEAGULL-100w和SEAGULL-3k,用于训练和评估基于ROIs的IQA。SEAGULL-100w包含100万张合成失真图像,其中包含3300万个ROIs,用于预训练以提高模型对区域质量感知的能力,而SEAGULL-3k包含3000个真实的失真ROIs,以增强模型对现实世界失真的感知能力。在SEAGULL-100w上进行预训练,并在SEAGULL-3k上进行微调后,SEAGULL在细粒度ROIs质量评估方面表现优异。代码和数据集可在https://github.com/chencn2020/Seagull免费获取。

论文: https://arxiv.org/pdf/2411.10161

最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值