大模型RAG | Agentic RAG最全面的综述(一)Agentic 模式

检索增强生成(Retrieval-Augmented Generation,RAG) 系统结合了大语言模型(LLM)检索机制,能够生成具有上下文相关性的高质量回答。虽然传统 RAG 在知识检索和生成方面表现出色,但在处理动态的多步推理任务、适应性调整以及复杂工作流的编排方面仍存在局限性。

Agentic RAG 通过将 Agent 引入 RAG 流程,实现了人工智能领域的一次重大变革。该方法增强了 RAG 的自主性,使 AI 在检索和生成过程中能够更智能地调整策略、优化流程。

作为综述论文 《Agentic Retrieval-Augmented Generation (Agentic RAG): A Survey On Agentic RAG》 的补充,提供了以下深入见解:

  • 核心原理与模式:介绍 Agentic RAG 的基本概念及其核心 Agentic 模式,包括反思(reflection)、规划(planning)、工具使用(tool use) 以及多智能体协作(multi-agent collaboration)
  • 系统分类:构建了 Agentic RAG 体系的详细分类,涵盖单智能体(single-agent)、多智能体(multi-agent)、层次化(hierarchical)、纠正型(corrective)、自适应(adaptive) 以及基于图结构(graph-based RAG) 的不同框架。
  • 对比分析:系统地比较了传统 RAG、Agentic RAG 和 Agentic 文档工作流(ADW),分析它们各自的优势、劣势及适用场景。
  • 实际应用:探讨 Agentic RAG 在医疗、教育、金融、法律分析等多个行业的现实应用案例。
  • 挑战与未来发展:讨论该领域面临的可扩展性(scalability)、伦理 AI(ethical AI)、多模态融合(multimodal integration)以及人机协作(human-agent collaboration) 等关键问题及发展方向。

本文旨在为研究人员和实践者提供全面的资源,以探索、实施并推进 Agentic RAG 系统的发展,助力 AI 在检索与生成任务上的智能化升级。

img

Agentic 模式

Agentic RAG 系统的智能性和适应性源于一系列明确的 Agentic 模式。这些模式使智能体能够处理复杂推理任务,适应动态环境,并高效协作,从而提升 RAG 的能力。

1. 反思(Reflection)

定义:Agent 评估自身决策和输出,识别错误并改进结果。

Reflection Pattern

核心优势

  • 允许 Agent 对结果进行迭代优化,不断提高准确性。
  • 增强多步推理任务的可靠性,减少错误传播。

示例
医疗诊断系统中,Agent 会基于检索到的数据迭代优化诊断结果,不断调整判断,以提供更精准的医疗建议。

2. 规划(Planning)

定义:Agent 创建结构化的工作流程任务序列,以高效地解决问题。

Planning Pattern

核心优势

  • 通过任务拆解实现多步推理,使复杂问题更易处理。
  • 通过优化任务优先级,减少计算开销,提高执行效率。

示例
金融分析系统中,Agent 会规划数据检索任务,优先获取关键财务数据,评估风险,并生成投资建议,提高分析的精准度和效率。

3. 工具使用(Tool Use)

定义:Agent 与外部工具、API 和知识库交互,以检索和处理数据。

Tool Use Pattern

核心优势

  • 扩展系统能力,突破仅依赖预训练知识的局限。
  • 通过整合外部资源,支持特定领域应用,提高专业性和精准度。

示例
法律助理系统中,Agent 可从合同数据库中检索相关条款,并根据特定法规进行合规性分析,辅助法律决策。

4. 多智能体协作(Multi-Agent Collaboration)

定义:多个 Agent 协同工作,分工合作解决复杂任务,并共享信息与结果。

Multi-Agent Collaboration Pattern

核心优势

  • 高效处理大规模、分布式问题,提升系统吞吐量和响应速度。
  • 整合多个 Agent 的专长,实现更精准、更全面的任务执行。

示例

  • 客户支持系统:不同 Agent 协作完成知识检索、回复生成、后续跟进等任务,提高客户服务效率。
  • 法律研究系统:通过多智能体工作流进行法律文献检索、信息分析,并生成精准法律见解。

Agentic 模式的重要性

这些模式构成了 Agentic RAG 系统的核心支柱,使其能够:

  • 动态适应任务需求,根据不同场景灵活调整策略。
  • 通过自我评估优化决策,不断提高推理能力和准确性。
  • 利用外部资源进行领域专属推理,提升专业性和实用性。
  • 通过协作处理复杂的分布式工作流,提高任务执行的效率与规模化能力。

如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

Agentic RAG种先进的信息检索和生成框架,它结合了代理(Agent)、检索增强生成(Retrieval-Augmented Generation, RAG)以及大型语言模型LLM)的能力。这种架构旨在更有效地处理复杂的查询请求,并提供更加准确的答案。 核心特点包括: - 动态编排机制:利用AI代理的灵活性来适应不同类型的用户需求,调整检索与生成策略以解决复杂的问题。 - 查询优化:当初始检索结果不理想时,系统会尝试改进查询条件或者采用其他手段提高结果质量。 - 工具调用:可以集成外部工具和服务,例如特定领域的API或数据库访问权限,从而扩展系统的功能范围。 - 多步推理能力:支持需要连续逻辑步骤才能完成的任务解答过程。 - 应用于各个领域:可以根据具体的应用场景创建专业的文档代理(Doc Agent),如财务、法律等领域,帮助收集相关信息并形成综合性的报告文本。 为了使 Agentic RAG 更加实用,在实际应用中通常还会涉及到以下几个方面的工作: 1. 定义明确的目标群体及其常见问题类型; 2. 设计合理的数据源接入方案确保获取高质量的信息资源; 3. 开发高效的算法实现快速而精确的结果匹配; 4. 测试和完善整个流程保证稳定可靠的用户体验。 通过这种方式,Agentic RAG 能够显著提升自动化问答服务的质量,特别是在面对那些涉及广泛背景知识和技术细节的情况下表现尤为突出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值