Glint360K | 使用指南

本文介绍了Glint360K数据集,它包含36万类别的人脸图像,是目前最大的干净人脸数据集。提供了数据集的下载地址和解压解码步骤,通过Python脚本将.rec格式转换为图片。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先恭喜格林深瞳3月18日在科创板成功上市

一、介绍

        Glint360K数据集包含36万类别的1800万张图像,不论是类别数还是图像数,相比MS1MV2数据集都有大幅提升。

这是一个号称全球最大最干净的人脸数据集,

下载地址(我自己上传的):链接:https://pan.baidu.com/s/1K3UDER9u352oNIyph-FI1w?pwd=3o3i 
提取码:3o3i 
--来自百度网盘超级会员V5的分享

二、解压和解码

下载好了之后先解压

cat glint360k_* | tar -xzvf -

然后它是.rec格式数据,下面我们将它解码成图片

先简单配置一个小环境:

conda create -n glint
source activate glint
pip install mxnet -i https://pypi.douban.com/simple
pip install opencv-python -i https://pypi.douban.com/simple

编写处理代码:

from __future__ import absolute_import
from __future__ import division
from __future__ import
### 下载 Glint360K 数据集的方法 Glint360K 是一个人脸识别领域的大规模数据集,包含约 36 万个类别和超过 1700 万张图片[^2]。该数据集相较于 MS1MV2,在类别数量和图像数量上均有显著提升[^1]。 #### 官方获取方式 目前,Glint360K 的官方发布主要通过 InsightFace 社区提供支持。以下是具体的下载步骤: 1. **访问官方资源页面** 访问 InsightFace 的 GitHub 页面 (https://github.com/deepinsight/insightface),在其文档或相关讨论中查找有关 Glint360K 数据集的链接[^5]。 2. **加入社区交流** 如果无法直接找到下载链接,可以通过 InsightFace 提供的 QQ 群号联系开发者和其他研究者。通常,这些社群会分享最新的数据集下载地址或其他相关信息。 3. **解压工具准备** 下载完成后,需使用 Python 脚本 `unpack_glint360k.py` 对压缩包进行解压。具体命令如下: ```bash python unpack_glint360k.py --include=xx/glint360k --output=xx/glint360k_unzip ``` 这里需要注意的是,默认情况下可能只会解压出部分文件(如 36 万 ID 和 1700 万图片),而其余 bin 文件的内容则需要进一步咨询开发团队确认其用途[^3]。 #### 额外注意事项 - 数据集中提到的总图片数为 1800 万,但在实际操作过程中可能会发现仅有 1700 万被成功解压。这一差异可能是由于某些二进制文件未完全公开所致。 - 若计划基于此数据集训练模型,则可以参考 FaceNet PyTorch 实现的相关教程[^4]。该项目不仅提供了完整的代码框架,还附带了一个预训练好的模型用于快速验证效果。 --- ### 示例代码:加载已解压的数据集 如果已经完成了解压过程并希望将其应用于深度学习任务,可采用以下代码片段作为起点: ```python import os from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader # 假设解压后的路径位于 './data/glint360k_unzip' dataset_path = "./data/glint360k_unzip" # 加载数据集 dataset = ImageFolder(root=dataset_path) # 创建数据加载器 dataloader = DataLoader(dataset, batch_size=64, shuffle=True) ``` 上述脚本利用 PyTorch 中的 `ImageFolder` 类自动读取目录结构中的分类标签,并构建适合神经网络输入格式的批次数据流。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值