一、引言
洪水是一种常见的自然灾害,对人民的生命财产安全和社会经济发展构成严重威胁。准确预测洪水的发生及发展对于防洪减灾工作至关重要。时间序列分析在洪水预测领域有着广泛应用,其中自相关函数(ACF)和偏自相关函数(PACF)是两种重要的分析工具,能够帮助我们深入理解洪水数据的内在规律,为预测模型的建立提供有力依据。
- ACF描述了一个观测值与另一个观测值之间的自相关,包括直接和间接的相关性信息。这意味着我们可以预期AR(k)时间序列的ACF使用了k的滞后,并且这种关系的惯性将继续影响到之后的滞后值,并随着逐步削弱到在某个点上缩小到没有。
- PACF只描述观测值与其滞后(lag)之间的直接关系。这表明,超过k的滞后值(lag value)不会再有相关性。
- 截尾:时间序列的自相关函数(ACF)或偏自相关函数(PACF)在某阶后均为0的性质(比如AR的PACF)
- 在大于某个常数k后快速趋于0为k阶截尾
- 拖尾:ACF或PACF并不在某阶后均为0的性质(比如AR的ACF)
- 始终有非零取值,不会在k大于某个常数后就恒等于零(或在0附近随机波动)
- AR模型: PACF截尾,ACF拖尾。
- MA模型: ACF截尾,PACF拖尾。
- ARMA模型: ACF和PACF均拖尾。
- 没有合适模型:ACF和PACF均截尾。
二、ACF 自相关法
(一)基本原理
ACF(Autocorrelation Function)用于衡量时间序列中不同时刻数据之间的相关性。对于洪水时间序列,其自相关系数反映了不同时滞下洪水数据的相关程度。计算公式为:
其中,xt 表示洪水时间序列在时刻 t 的数据,xˉ 是序列的均值,k 为滞后阶数。
(二)性质及应用
性质 :ACF 图横坐标表示滞后的阶数,纵坐标表示对应的滞后序列与原始序列的相关系数。随着滞后阶数增加,相关性逐渐降低。图中蓝色区域为置信区间,若相关系数落在置信区间内,表明对应序列相关性不显著。
- 从自相关ACF图可知,可以理解其为4阶截尾,也或者理解为拖尾现象,但一般情况下4阶会比较大,因而暂认为当前数据为拖尾现象。
- 应用 :通过 ACF 图可以初步判断洪水时间序列的平稳性和季节性等特征。若序列平稳,ACF 图会呈现出指数衰减或正弦衰减等规律;若存在季节性,会在特定滞后阶数上出现显著峰值。
(三)代码示例
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf
# 假设 flood_data 为洪水时间序列数据
flood_data = pd.read_excel('flood_data.xlsx', engine='openpyxl')
flood_data['flood'].plot()
plot_acf(flood_data['flood'], lags=40, adjusted=False)
plt.show()
三、PACF 偏自相关法
(一)基本原理
PACF(Partial Autocorrelation Function)用于衡量时间序列中两个时间点数据之间的直接相关性,排除中间时间点的影响。对于洪水时间序列,其偏自相关系数表示在控制了中间滞后项的影响后,当前洪水数据与滞后 k 期洪水数据之间的直接相关性。计算公式较为复杂,通常借助统计软件或编程库进行计算。
(二)性质及应用
性质 :PACF 图同样以滞后的阶数为横坐标,相关系数为纵坐标。与 ACF 图不同的是,PACF 图更侧重于反映序列之间的直接相关性。
- 从偏自相关图PACF可以看出:从2阶开始快速趋近于0,意味着在2阶截尾(也可以看成是3阶截尾,或者4阶截尾均可)。结合判断标准可知:自相关图为拖尾,偏自相关图为2阶截尾。因此最终模型选择为AR(2)较为适合。
- 应用 :在洪水预测中,PACF 图可用于确定自回归模型的阶数。当 PACF 图在某个滞后阶数之后突然截断,即相关系数迅速变为零或落在置信区间内时,该滞后阶数可作为自回归模型的阶数选择依据。
SPSS在线_SPSSAU_自相关acf/偏自相关pacf图分析
(三)代码示例
from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(flood_data['flood'], lags=40, method='ols')
plt.show()
四、ACF 与 PACF 在洪水预测中的联合应用
(一)模型识别
在建立洪水预测模型时,首先利用 ACF 和 PACF 图对洪水时间序列的性质进行分析。若 ACF 图呈现拖尾特征,而 PACF 图在滞后 p 阶截尾,则可考虑建立 AR(p)模型;若 ACF 图在滞后 q 阶截尾,PACF 图呈现拖尾特征,则适合建立 MA(q)模型;若两者均呈现拖尾特征,则可尝试建立 ARMA 或 ARIMA 模型。关于上述ACF和PACF图的解读上,通常需要结合研究人员的主观判断加以定夺(并且很多时候可以有多个候选模型),没有绝对的标准。
(二)参数估计与模型验证
根据 ACF 和 PACF 的分析结果初步确定模型阶数后,使用历史洪水数据对模型参数进行估计。然后通过计算模型残差的 ACF 和 PACF,检查残差是否为白噪声序列,以验证模型的合理性。若残差序列的 ACF 和 PACF 均无显著相关性,则说明模型对洪水数据的拟合效果较好,可以用于洪水预测。
(三)实际案例分析
假设我们有一组某地区过去多年的月度洪水数据,通过绘制 ACF 和 PACF 图发现,ACF 图在滞后 1、2 阶有显著峰值,之后逐渐衰减;PACF 图在滞后 1 阶有显著峰值,滞后 2 阶之后截尾。根据这些特征,我们初步确定建立 AR(1)模型。利用历史数据估计模型参数后,对模型进行验证,发现残差序列表现出白噪声特性,最终使用该模型对该地区未来的洪水情况进行预测,为防洪决策提供科学依据。
五、总结
ACF 自相关法和 PACF 偏自相关法在洪水预测中具有重要作用。ACF 能够揭示洪水时间序列的自相关模式,帮助我们了解洪水的平稳性和季节性等特征;PACF 则侧重于反映序列之间的直接相关性,为自回归模型的阶数选择提供依据。通过联合运用 ACF 和 PACF,可以更准确地识别洪水时间序列的统计特性,建立合适的预测模型,提高洪水预测的精度,从而为防洪减灾工作提供有力支持。在未来的研究中,我们还可以结合其他先进的数据分析方法和模型,进一步优化洪水预测技术,更好地应对洪水灾害带来的挑战。