各类GAN特征描述(持续更新)

各类GAN特征描述

1)DC-GAN:

structure:
ps:(生成器的最后一层和判别器的第一层不加batch-norm)
dcgan

paper: http://arxiv.org/abs/1511.06434

contributions:
1 将网络应用于GAN的训练。
2 为GAN的训练提供了一个很好的网络拓扑结构。
3 表明生成的特征具有向量的计算特性。

weakness:
1 但是对GAN训练稳定性来说是治标不治本,没有从根本上解决问题,而且训练的时候仍需要小心的平衡G,D的训练进程,往往是训练一个多次,训练另一个一次。

2)SA-GAN:

structure:
SA-GAN
paper: https://arxiv.org/abs/1805.08318

contributions:
1 利用self-attention机制更好地考虑全局信息。
2 利用spectral normalization和TTUR(two timescale update rule)使模型训练更加稳定。
3 根据self-attention机制可以生成质量非常高的数据。

3)Big-GAN:

structure:
B
paper: https://arxiv.org/abs/1809.11096

contributions:
1 通过2-4倍的增加参数量(增加channel),8倍的扩大batchsize,可以使GAN获得最大的性能提升。
2 通过使用截断技巧(truncation trick),可以使得训练更加平稳,但是需要在多样性和逼真度之间做平衡。
3 通过现存的和其他新颖的各种技术的集合,可以保证训练的平稳性,但是精度也会随之下降,需要在性能和训练平稳性之间做平衡。

负面影响:
Reference: https://blog.csdn.net/qq_14845119/article/details/85619705
1 增加网络深度会使得精度降低。
2 在判别器上使用贡献嵌入参数的方法,对参数的选择非常敏感,刚开始有助于训练,后续则很难优化。
3 使用WeightNorm 替换BatchNorm 会使得训练难以收敛,去掉BatchNorm 只有Spectral Normalization 也会使得难以收敛。
4 判别器中增加BatchNorm 会使得训练难以收敛。
5 在128128的输入情况下,改变attention block对精度没提升,在256256输入的情况下,将attention block上移一级,会对精度有提升。
6 相比采用33的滤波器,采用55的滤波器会使精度有略微提升,而7*7则不会。
7 使用膨胀卷积会降低精度
8 将生成器中的最近邻插值换为双线性插值会使得精度降低。
9 在共享嵌入中使用权值衰减(weight decay),当该衰减值较大(10-6 )会损失精度,较小(10-8 )会起不到作用,不能阻止梯度爆炸。
10 在类别嵌入中,使用多层感知机(MLP)并不比线性投影(linear projections)好。
11 梯度归一化截断会使得训练不平稳。

4)W-GAN:

ps: 判别器最后一层去掉sigmoid。

W-GAN的网络结构和GAN一样,损失函数替换成Wasserstein距离。

paper: https://arxiv.org/abs/1701.07875

contributions:
1 以Wasserstein距离作为收敛性的度量(以缩小Wasserstein距离为目标)。
2 利用lipschitz连续性限制手法-梯度裁减,使得训练更加稳定。
3 解决了模式崩溃的(collapse mode)问题,生成结果多样性更丰富。
4 对GAN的训练提供了一个收敛指标。

weakness:
1 强制裁减梯度会造成权重的两极化,权重的值大部分分布在边界处,这对于深度神经网络来说不能充分发挥深度神经网络的拟合能力;并且,也发现强制剪切权重容易导致梯度消失或者梯度爆炸,梯度消失很好理解,就是权重得不到更新信息,梯度爆炸就是更新过猛了,权重每次更新都变化很大,很容易导致训练不稳定。

5)W-GAN-GP:

ps: 判别器最后一层去掉sigmoid。

W-GAN-GP的网络结构和GAN一样,损失函数替换成Wasserstein距离。
paper: https://arxiv.org/abs/1704.00028

contributions:
1 提出了一种新的lipschitz连续性限制手法—梯度惩罚,避免了权重两极化的情况,解决了训练梯度消失梯度爆炸的问题(由于是对每个batch中的每一个样本都做了梯度惩罚,所以判别器中不建议使用 batch norm且激活函数一般不使用基于使用动量的优化算法)。
2 比标准WGAN拥有更快的收敛速度,并能生成更高质量的样本。
3 提供稳定的GAN训练方式,几乎不需要怎么调参,成功训练多种针对图片生成和语言模型的GAN架构。

6)LSGAN:

paper: https://arxiv.org/abs/1611.04076

contributions:
1 使用了最小二乘损失函数代替了GAN的损失函数,缓解了GAN训练不稳定和生成图像质量差多样性不足的问题。

weakness:
1 LSGAN对离群样本的惩罚机制要求所有的生成样本分布,导致样本生成的”多样性”降低, 生成的样本很可能只是对真实样本的简单”模仿”和细微改动。

7)StarGAN:

structure:
starGAN
paper: https://arxiv.org/abs/1711.09020

contributions:
1 设计了一个新颖的网络架构可以在只训练一个G和一个D的情况下就可以实现多领域图像转换。
2 将各个领域的特征学习映射到一个vector实现特征控制!!!

8)BEGAN:

structure:
在这里插入图片描述
paper: https://arxiv.org/abs/1703.10717

contributions:
1 采用autoencoder结构的discriminator,使得收敛速度有所提升。
2 提供了一个超参数,这个超参数可以在图像的多样性和生成质量之间做均衡,并且能够使GAN训练的更加稳定。
3 使用Wasserstein distance评估模型。

9)ClusterGAN:

structure:
cluster-gan
paper: https://arxiv.org/abs/1809.03627

contributions:
1 在网络结构中加入Encoder与G一起训练,可以有效地保存聚类结构信息。
2 利用离散和连续潜在变量的混合,以在潜在空间中创建非光滑几何。
3 提出了一种适应离散连续混合的新型反向传播算法,以及一个显式反向映射网络,以获得给定数据点的潜变量,因为该问题是非凸的。
4 联合训练GAN以及具有聚类特定损失的反向映射网络,以便投影空间中的距离几何反映变量的距离几何。

10)GANMM:

structure:
GANMM
paper: http://lamda.nju.edu.cn/yuy/(X(1)S(bfxaly24rpylwn55a3emukjm))/GetFile.aspx?File=papers/ijcai18-GANMM.pdf

contributions:
1 设计出一个高效的聚类网络结构。
2 使用ϵ-Expectation-Maximization 算法防止 EM 在 GAN 中过早收敛的问题。
3 设计了一个防止聚类不平衡的算法(根据当前各个聚类的情况在下一轮次提供不同数量的训练数据)。

weakness:
1 每个类别都需要训练一个GAN,内存耗费过大,训练时间过长。

11)DeLiGAN:

structure:
DELIGAN
paper: https://arxiv.org/abs/1706.02071

contributions:
1 提出一种GAN架构可以非常好地训练数据量小并且多样性多的数据集。
2 结合高斯混合模型对输入latent z z z做一个线性变换 z = μ k + σ k ∗ z z=\mu_{k}+\sigma_{k}*z z=μ

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值