DEC(Deep Embedded Cluster)小结

DEC是一种深度学习驱动的聚类方法,它结合了深度神经网络和聚类算法,尤其适用于高维数据。DEC通过学习低维特征表示并优化聚类分配,使用KL散度最小化来改进聚类效果。算法包括自动编码器预训练和聚类优化两个阶段,实现了聚类和特征学习的联合优化,提供了一种有效的非监督学习策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Deep Embedded Cluster

简介

一般的聚类算法例如K-means,GMM,这些方法速度快,适用于各种各样的问题, 但是,它们的距离度量仅限于原始数据空间,当输入维度较高时,它们往往无效。因此突出DEC聚类,DEC可以同时学习使用深度神经网络的特征表示和聚类分配,DEC从数据空间学习映射到低维特征空间,在该特征空间中迭代地优化聚类目标。

DEC定义了一个基于质心的概率分布,并将KL散度最小化为一个辅助目标分布,以同时改善聚类分配和特征表示,而不是最小化KL散度以产生忠实于原始数据空间中的距离的嵌入。 基于质心的方法还具有降低 O(nk) 的复杂度的优点,其中k是质心的数量。

DEC通过同时学习特征空间Z中的k个聚类中心 { u j ∈ Z } j = 1 k \{u_{j} \in Z\}_{j=1}^k { ujZ}j=1k 和将数据点映射到Z的DNN的参数 θ \theta θ 来聚类数据。DEC具有两个阶段:( 1)使用自动编码器进行参数初始化,(2)参数优化(即聚类),其中我们在计算辅助目标分布和最小化Kullback-Leibler(KL)散度之间进行迭代。

贡献:
(a)深度嵌入和聚类的联合优化;
(b)通过软分配进行新颖的迭代改进;
(c)得出聚类精度和速度方面最先进的聚类结果;

KL散度

给定非线性映射 f θ f_{\theta} fθ 和初始聚类质心 { u j } j = 1 k \{u_{j}\}_{j=1}^{k} { uj}j=1k 的初始估计,DEC使用在两个步骤之间交替的无监督算法来改进聚类。 在第一步中,我们计算嵌入点和集群质心之间的软分配。 在第二步中,我们更新深度映射 f θ f_{\theta} fθ 并通过使用辅助目标分布从当前高置信度分配中学习来优化聚类质心。 重复这个过程直到满足收敛条件。

软分配

基于 t-sne 的思想,DEC使用 t 分布作为核来测量嵌入点和质心之间的相似度。
q i j = ( 1 + ∣ ∣ z i − u j ∣ ∣ 2 / α ) α + 1 2 ∑ j ‘ ( 1 + ∣ ∣ z i − u j ‘ ∣ ∣ 2 / α ) α + 1 2 q_{ij}=\frac{(1+||z_{i}-u_{j}||^2/\alpha)^\frac{\alpha+1}{2}}{\sum_{j^`}(1+||z_{i}-u_{j^`}||^2/\alpha)^\frac{\alpha+1}{2}} qij=j(1+ziu

### 深度学习聚类算法概述 深度聚类是一种结合深度学习和传统聚类方法的技术,其核心在于利用深度神经网络强大的特征提取能力来发现数据中的隐藏模式并完成无监督分类任务[^1]。这种技术通常由两部分组成:**聚类损失函数**和**网络损失函数**,分别用于优化聚类效果和提升特征表达的质量。 #### 基础深度聚类算法 DEC 和 SDEC 一种经典的深度聚类算法是 **Deep Embedded Clustering (DEC)**,该算法通过先预训练一个自编码器(Autoencoder),然后在其隐层空间中执行 K-Means 初始化聚类中心,并进一步微调整个模型以最大化样本与其分配簇之间的相似性[^3]。以下是其实现的关键步骤: 1. 使用自编码器对输入数据进行降维处理,获得低维嵌入表示。 2. 对这些嵌入表示应用传统的 K-Means 方法初始化聚类中心。 3. 定义目标函数并通过反向传播调整参数,使得最终的嵌入更接近于理想的簇分布。 为了增强灵活性以及应对噪声标签的情况,还提出了改进版本——**Self-Supervised Deep Embedded Clustering (SDEC)** ,它引入少量标注信息指导聚类过程,在一定程度上缓解了完全无监督条件下可能存在的局限性。 #### PyTorch 实现 pt-dec 工具包介绍 对于希望快速入门或者实际部署 DEC 的研究者而言,“pt-dec” 是一款基于 PyTorch 开发的良好工具包[^4]。下面给出一段简单的 MNIST 数据集上的使用案例代码片段: ```python from sklearn.datasets import fetch_openml import numpy as np from ptdec.model import train, test from ptdec.utils import cluster_accuracy def main(): # 加载MNIST数据集 mnist = fetch_openml('mnist_784', version=1) data = mnist.data / 255. # 训练阶段 model = train(data[:60000], clusters=10) # 测试阶段 predicted = test(model, data[60000:]) actual = np.asarray(mnist.target[60000:], dtype=int) accuracy = cluster_accuracy(actual, predicted.argmax(axis=1)) print(f'Final clustering accuracy after fine-tuning: {accuracy}') if __name__ == "__main__": main() ``` 此脚本首先加载 MNIST 手写数字图片集合作为实验素材;接着调用 `train` 函数构建并训练完整的 DEC 架构;最后评估测试集中每张图像被正确分组的比例,报告总体精确度约为 85%。 ### 总结 综上所述,现代深度学习驱动下的聚类方案不仅继承了经典统计学框架的优点,而且借助多层感知机架构挖掘出了更加精细的数据内在联系。无论是理论探索还是工程实践领域都有广阔的发展前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值