InfoGAN
期望的是 input 的每一个维度都能表示输出数据的某种特征。但实际改变输入的一个特定维度取值,很难发现输出数据随之改变的规律。
InfoGAN 就是想解决这个问题。在 GAN 结构以外,把输入 z 分成两个部分 c 和 z' ,然后根据 generated data x 来预测给到 generator 的 c 是什么,这里的ae 做的事情是 code-x-code。同时还需要 discriminator 来配合,x 还必须要足够像目标数据(要不 generator 直接把 c 复制过来就最容易让 classifer 预测对)。
为了要让 classifer 可以成功从 x 中预测原来的 c(能反推回去),那 generator 就要让 c 的每一个维度都对 output 有一个明确的影响。就让 z' 去表示那些无法解释的特征。